




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022屆陜西省西安市愛知中學(xué)中考沖刺卷數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.若正比例函數(shù)y=kx的圖象上一點(diǎn)(除原點(diǎn)外)到x軸的距離與到y(tǒng)軸的距離之比為3,且y值隨著x值的增大而減小,則k的值為()A.﹣ B.﹣3 C. D.32.下列哪一個(gè)是假命題()A.五邊形外角和為360°B.切線垂直于經(jīng)過切點(diǎn)的半徑C.(3,﹣2)關(guān)于y軸的對(duì)稱點(diǎn)為(﹣3,2)D.拋物線y=x2﹣4x+2017對(duì)稱軸為直線x=23.如圖是由5個(gè)相同的正方體搭成的幾何體,其左視圖是()A. B.C. D.4.如圖,將函數(shù)y=(x﹣2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A(1,m),B(4,n)平移后的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是()A.y=(x﹣2)2-2 B.y=(x﹣2)2+7C.y=(x﹣2)2-5 D.y=(x﹣2)2+45.如圖,平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別落在x、y軸上,點(diǎn)B坐標(biāo)為(6,4),反比例函數(shù)的圖象與AB邊交于點(diǎn)D,與BC邊交于點(diǎn)E,連結(jié)DE,將△BDE沿DE翻折至△B'DE處,點(diǎn)B'恰好落在正比例函數(shù)y=kx圖象上,則k的值是()A. B. C. D.6.如圖,在Rt△ABC中,∠B=90o,AB=6,BC=8,點(diǎn)D在BC上,以AC為對(duì)角線的所有□ADCE中,DE的最小值是(
)A.4 B.6 C.8 D.107.如圖,在△ABC中,DE∥BC交AB于D,交AC于E,錯(cuò)誤的結(jié)論是(
).A. B. C. D.8.已知二次函數(shù)(為常數(shù)),當(dāng)時(shí),函數(shù)的最小值為5,則的值為()A.-1或5 B.-1或3 C.1或5 D.1或39.如圖,共有12個(gè)大不相同的小正方形,其中陰影部分的5個(gè)小正方形是一個(gè)正方體的表面展開圖的一部分.現(xiàn)從其余的小正方形中任取一個(gè)涂上陰影,則能構(gòu)成這個(gè)正方體的表面展開圖的概率是()A. B. C. D.10.已知反比例函數(shù),下列結(jié)論不正確的是()A.圖象經(jīng)過點(diǎn)(﹣2,1) B.圖象在第二、四象限C.當(dāng)x<0時(shí),y隨著x的增大而增大 D.當(dāng)x>﹣1時(shí),y>2二、填空題(共7小題,每小題3分,滿分21分)11.為響應(yīng)“書香成都”建設(shè)的號(hào)召,在全校形成良好的人文閱讀風(fēng)尚,成都市某中學(xué)隨機(jī)調(diào)查了部分學(xué)生平均每天的閱讀時(shí)間,統(tǒng)計(jì)結(jié)果如圖所示,則在本次調(diào)查中,閱讀時(shí)間的中位數(shù)是________小時(shí).12.我國(guó)古代《易經(jīng)》一書中記載,遠(yuǎn)古時(shí)期,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩記數(shù)”.如圖,一位婦女在從右到左依次排列的繩子上打結(jié),滿六進(jìn)一,用來記錄采集到的野果數(shù)量,由圖可知,她一共采集到的野果數(shù)量為_____個(gè).13.圖①是一個(gè)三角形,分別連接這個(gè)三角形的中點(diǎn)得到圖②;再分別連接圖②中間小三角形三邊的中點(diǎn),得到圖③.按上面的方法繼續(xù)下去,第n個(gè)圖形中有_____個(gè)三角形(用含字母n的代數(shù)式表示).14.已知一次函數(shù)y=ax+b,且2a+b=1,則該一次函數(shù)圖象必經(jīng)過點(diǎn)_____.15.如圖,△ABC中,AB=AC,D是AB上的一點(diǎn),且AD=AB,DF∥BC,E為BD的中點(diǎn).若EF⊥AC,BC=6,則四邊形DBCF的面積為____.16.圓柱的底面半徑為1,母線長(zhǎng)為2,則它的側(cè)面積為_____.(結(jié)果保留π)17.比較大?。篲______3(填“”或“”或“”)三、解答題(共7小題,滿分69分)18.(10分)綜合與探究如圖1,平面直角坐標(biāo)系中,拋物線y=ax2+bx+3與x軸分別交于點(diǎn)A(﹣2,0),B(4,0),與y軸交于點(diǎn)C,點(diǎn)D是y軸負(fù)半軸上一點(diǎn),直線BD與拋物線y=ax2+bx+3在第三象限交于點(diǎn)E(﹣4,y)點(diǎn)F是拋物線y=ax2+bx+3上的一點(diǎn),且點(diǎn)F在直線BE上方,將點(diǎn)F沿平行于x軸的直線向右平移m個(gè)單位長(zhǎng)度后恰好落在直線BE上的點(diǎn)G處.(1)求拋物線y=ax2+bx+3的表達(dá)式,并求點(diǎn)E的坐標(biāo);(2)設(shè)點(diǎn)F的橫坐標(biāo)為x(﹣4<x<4),解決下列問題:①當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),求平移距離m的值;②用含x的式子表示平移距離m,并求m的最大值;(3)如圖2,過點(diǎn)F作x軸的垂線FP,交直線BE于點(diǎn)P,垂足為F,連接FD.是否存在點(diǎn)F,使△FDP與△FDG的面積比為1:2?若存在,直接寫出點(diǎn)F的坐標(biāo);若不存在,說明理由.19.(5分)我市為創(chuàng)建全國(guó)文明城市,志愿者對(duì)某路段的非機(jī)動(dòng)車逆行情況進(jìn)行了10天的調(diào)查,將所得數(shù)據(jù)繪制成如下統(tǒng)計(jì)圖(圖2不完整):請(qǐng)根據(jù)所給信息,解答下列問題:(1)這組數(shù)據(jù)的中位數(shù)是,眾數(shù)是;(2)請(qǐng)把圖2中的頻數(shù)直方圖補(bǔ)充完整;(溫馨提示:請(qǐng)畫在答題卷相對(duì)應(yīng)的圖上)(3)通過“小手拉大手”活動(dòng)后,非機(jī)動(dòng)車逆向行駛次數(shù)明顯減少,經(jīng)過這一路段的再次調(diào)查發(fā)現(xiàn),平均每天的非機(jī)動(dòng)車逆向行駛次數(shù)比第一次調(diào)查時(shí)減少了4次,活動(dòng)后,這一路段平均每天還出現(xiàn)多少次非機(jī)動(dòng)車逆向行駛情況?20.(8分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點(diǎn)D,與CA的延長(zhǎng)線相交于點(diǎn)E,過點(diǎn)D作DF⊥AC于點(diǎn)F.(1)試說明DF是⊙O的切線;(2)若AC=3AE,求tanC.21.(10分)如圖1,已知直線l:y=﹣x+2與y軸交于點(diǎn)A,拋物線y=(x﹣1)2+m也經(jīng)過點(diǎn)A,其頂點(diǎn)為B,將該拋物線沿直線l平移使頂點(diǎn)B落在直線l的點(diǎn)D處,點(diǎn)D的橫坐標(biāo)n(n>1).(1)求點(diǎn)B的坐標(biāo);(2)平移后的拋物線可以表示為(用含n的式子表示);(3)若平移后的拋物線與原拋物線相交于點(diǎn)C,且點(diǎn)C的橫坐標(biāo)為a.①請(qǐng)寫出a與n的函數(shù)關(guān)系式.②如圖2,連接AC,CD,若∠ACD=90°,求a的值.22.(10分)綜合與實(shí)踐﹣猜想、證明與拓廣問題情境:數(shù)學(xué)課上同學(xué)們探究正方形邊上的動(dòng)點(diǎn)引發(fā)的有關(guān)問題,如圖1,正方形ABCD中,點(diǎn)E是BC邊上的一點(diǎn),點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,直線DF交AB于點(diǎn)H,直線FB與直線AE交于點(diǎn)G,連接DG,CG.猜想證明(1)當(dāng)圖1中的點(diǎn)E與點(diǎn)B重合時(shí)得到圖2,此時(shí)點(diǎn)G也與點(diǎn)B重合,點(diǎn)H與點(diǎn)A重合.同學(xué)們發(fā)現(xiàn)線段GF與GD有確定的數(shù)量關(guān)系和位置關(guān)系,其結(jié)論為:;(2)希望小組的同學(xué)發(fā)現(xiàn),圖1中的點(diǎn)E在邊BC上運(yùn)動(dòng)時(shí),(1)中結(jié)論始終成立,為證明這兩個(gè)結(jié)論,同學(xué)們展開了討論:小敏:根據(jù)軸對(duì)稱的性質(zhì),很容易得到“GF與GD的數(shù)量關(guān)系”…小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如△AFB,…小凱:不妨設(shè)圖中不斷變化的角∠BAF的度數(shù)為n,并設(shè)法用n表示圖中的一些角,可證明結(jié)論.請(qǐng)你參考同學(xué)們的思路,完成證明;(3)創(chuàng)新小組的同學(xué)在圖1中,發(fā)現(xiàn)線段CG∥DF,請(qǐng)你說明理由;聯(lián)系拓廣:(4)如圖3若將題中的“正方形ABCD”變?yōu)椤傲庑蜛BCD“,∠ABC=α,其余條件不變,請(qǐng)?zhí)骄俊螪FG的度數(shù),并直接寫出結(jié)果(用含α的式子表示).23.(12分)如圖,平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,3),點(diǎn)B(,0),連接AB,若對(duì)于平面內(nèi)一點(diǎn)C,當(dāng)△ABC是以AB為腰的等腰三角形時(shí),稱點(diǎn)C是線段AB的“等長(zhǎng)點(diǎn)”.(1)在點(diǎn)C1(﹣2,3+2),點(diǎn)C2(0,﹣2),點(diǎn)C3(3+,﹣)中,線段AB的“等長(zhǎng)點(diǎn)”是點(diǎn)________;(2)若點(diǎn)D(m,n)是線段AB的“等長(zhǎng)點(diǎn)”,且∠DAB=60°,求點(diǎn)D的坐標(biāo);(3)若直線y=kx+3k上至少存在一個(gè)線段AB的“等長(zhǎng)點(diǎn)”,求k的取值范圍.24.(14分)如圖,邊長(zhǎng)為1的正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O.有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM、PN分別與OA、OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點(diǎn),連接EF交OB于點(diǎn)G.(1)求四邊形OEBF的面積;(2)求證:OG?BD=EF2;(3)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時(shí),求AE的長(zhǎng).
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解析】
設(shè)該點(diǎn)的坐標(biāo)為(a,b),則|b|=1|a|,利用一次函數(shù)圖象上的點(diǎn)的坐標(biāo)特征可得出k=±1,再利用正比例函數(shù)的性質(zhì)可得出k=-1,此題得解.【詳解】設(shè)該點(diǎn)的坐標(biāo)為(a,b),則|b|=1|a|,∵點(diǎn)(a,b)在正比例函數(shù)y=kx的圖象上,∴k=±1.又∵y值隨著x值的增大而減小,∴k=﹣1.故選:B.【點(diǎn)睛】本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及正比例函數(shù)的性質(zhì),利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,找出k=±1是解題的關(guān)鍵.2、C【解析】分析:根據(jù)每個(gè)選項(xiàng)所涉及的數(shù)學(xué)知識(shí)進(jìn)行分析判斷即可.詳解:A選項(xiàng)中,“五邊形的外角和為360°”是真命題,故不能選A;B選項(xiàng)中,“切線垂直于經(jīng)過切點(diǎn)的半徑”是真命題,故不能選B;C選項(xiàng)中,因?yàn)辄c(diǎn)(3,-2)關(guān)于y軸的對(duì)稱點(diǎn)的坐標(biāo)是(-3,-2),所以該選項(xiàng)中的命題是假命題,所以可以選C;D選項(xiàng)中,“拋物線y=x2﹣4x+2017對(duì)稱軸為直線x=2”是真命題,所以不能選D.故選C.點(diǎn)睛:熟記:(1)凸多邊形的外角和都是360°;(2)切線的性質(zhì);(3)點(diǎn)P(a,b)關(guān)于y軸的對(duì)稱點(diǎn)為(-a,b);(4)拋物線的對(duì)稱軸是直線:等數(shù)學(xué)知識(shí),是正確解答本題的關(guān)鍵.3、A【解析】
根據(jù)三視圖的定義即可判斷.【詳解】根據(jù)立體圖可知該左視圖是底層有2個(gè)小正方形,第二層左邊有1個(gè)小正方形.故選A.【點(diǎn)睛】本題考查三視圖,解題的關(guān)鍵是根據(jù)立體圖的形狀作出三視圖,本題屬于基礎(chǔ)題型.4、D【解析】
∵函數(shù)的圖象過點(diǎn)A(1,m),B(4,n),∴m==,n==3,∴A(1,),B(4,3),過A作AC∥x軸,交B′B的延長(zhǎng)線于點(diǎn)C,則C(4,),∴AC=4﹣1=3,∵曲線段AB掃過的面積為9(圖中的陰影部分),∴AC?AA′=3AA′=9,∴AA′=3,即將函數(shù)的圖象沿y軸向上平移3個(gè)單位長(zhǎng)度得到一條新函數(shù)的圖象,∴新圖象的函數(shù)表達(dá)式是.故選D.5、B【解析】
根據(jù)矩形的性質(zhì)得到,CB∥x軸,AB∥y軸,于是得到D、E坐標(biāo),根據(jù)勾股定理得到ED,連接BB′,交ED于F,過B′作B′G⊥BC于G,根據(jù)軸對(duì)稱的性質(zhì)得到BF=B′F,BB′⊥ED求得BB′,設(shè)EG=x,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:∵矩形OABC,∴CB∥x軸,AB∥y軸.∵點(diǎn)B坐標(biāo)為(6,1),∴D的橫坐標(biāo)為6,E的縱坐標(biāo)為1.∵D,E在反比例函數(shù)的圖象上,∴D(6,1),E(,1),∴BE=6﹣=,BD=1﹣1=3,∴ED==.連接BB′,交ED于F,過B′作B′G⊥BC于G.∵B,B′關(guān)于ED對(duì)稱,∴BF=B′F,BB′⊥ED,∴BF?ED=BE?BD,即BF=3×,∴BF=,∴BB′=.設(shè)EG=x,則BG=﹣x.∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=.故選B.【點(diǎn)睛】本題考查了翻折變換(折疊問題),矩形的性質(zhì),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.6、B【解析】
平行四邊形ADCE的對(duì)角線的交點(diǎn)是AC的中點(diǎn)O,當(dāng)OD⊥BC時(shí),OD最小,即DE最小,根據(jù)三角形中位線定理即可求解.【詳解】平行四邊形ADCE的對(duì)角線的交點(diǎn)是AC的中點(diǎn)O,當(dāng)OD⊥BC時(shí),OD最小,即DE最小?!逴D⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位線,∴OD=AB=3,∴DE=2OD=6.故選:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),解題的關(guān)鍵是利用三角形中位線定理進(jìn)行求解.7、D【解析】
根據(jù)平行線分線段成比例定理及相似三角形的判定與性質(zhì)進(jìn)行分析可得出結(jié)論.【詳解】由DE∥BC,可得△ADE∽△ABC,并可得:,,,故A,B,C正確;D錯(cuò)誤;故選D.【點(diǎn)睛】考點(diǎn):1.平行線分線段成比例;2.相似三角形的判定與性質(zhì).8、A【解析】
由解析式可知該函數(shù)在x=h時(shí)取得最小值1,x>h時(shí),y隨x的增大而增大;當(dāng)x<h時(shí),y隨x的增大而減?。桓鶕?jù)1≤x≤3時(shí),函數(shù)的最小值為5可分如下兩種情況:①若h<1,可得x=1時(shí),y取得最小值5;②若h>3,可得當(dāng)x=3時(shí),y取得最小值5,分別列出關(guān)于h的方程求解即可.【詳解】解:∵x>h時(shí),y隨x的增大而增大,當(dāng)x<h時(shí),y隨x的增大而減小,∴①若h<1,當(dāng)時(shí),y隨x的增大而增大,∴當(dāng)x=1時(shí),y取得最小值5,可得:,解得:h=?1或h=3(舍),∴h=?1;②若h>3,當(dāng)時(shí),y隨x的增大而減小,當(dāng)x=3時(shí),y取得最小值5,可得:,解得:h=5或h=1(舍),∴h=5,③若1≤h≤3時(shí),當(dāng)x=h時(shí),y取得最小值為1,不是5,∴此種情況不符合題意,舍去.綜上所述,h的值為?1或5,故選:A.【點(diǎn)睛】本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的性質(zhì)和最值進(jìn)行分類討論是解題的關(guān)鍵.9、D【解析】
由正方體表面展開圖的形狀可知,此正方體還缺一個(gè)上蓋,故應(yīng)在圖中四塊相連的空白正方形中選一塊,再根據(jù)概率公式解答即可.【詳解】因?yàn)楣灿?2個(gè)大小相同的小正方形,其中陰影部分的5個(gè)小正方形是一個(gè)正方體的表面展開圖的一部分,所以剩下7個(gè)小正方形.在其余的7個(gè)小正方形中任取一個(gè)涂上陰影,能構(gòu)成這個(gè)正方體的表面展開圖的小正方形有4個(gè),因此先從其余的小正方形中任取一個(gè)涂上陰影,能構(gòu)成這個(gè)正方體的表面展開圖的概率是.故選D.【點(diǎn)睛】本題考查了概率公式,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比,掌握概率公式是本題的關(guān)鍵.10、D【解析】
A選項(xiàng):把(-2,1)代入解析式得:左邊=右邊,故本選項(xiàng)正確;
B選項(xiàng):因?yàn)?2<0,圖象在第二、四象限,故本選項(xiàng)正確;
C選項(xiàng):當(dāng)x<0,且k<0,y隨x的增大而增大,故本選項(xiàng)正確;
D選項(xiàng):當(dāng)x>0時(shí),y<0,故本選項(xiàng)錯(cuò)誤.
故選D.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】由統(tǒng)計(jì)圖可知共有:8+19+10+3=40人,中位數(shù)應(yīng)為第20與第21個(gè)的平均數(shù),而第20個(gè)數(shù)和第21個(gè)數(shù)都是1(小時(shí)),則中位數(shù)是1小時(shí).故答案為1.12、1【解析】分析:類比于現(xiàn)在我們的十進(jìn)制“滿十進(jìn)一”,可以表示滿六進(jìn)一的數(shù)為:萬位上的數(shù)×64+千位上的數(shù)×63+百位上的數(shù)×62+十位上的數(shù)×6+個(gè)位上的數(shù),即1×64+2×63+3×62+0×6+2=1.詳解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,故答案為:1.點(diǎn)睛:本題是以古代“結(jié)繩計(jì)數(shù)”為背景,按滿六進(jìn)一計(jì)數(shù),運(yùn)用了類比的方法,根據(jù)圖中的數(shù)學(xué)列式計(jì)算;本題題型新穎,一方面讓學(xué)生了解了古代的數(shù)學(xué)知識(shí),另一方面也考查了學(xué)生的思維能力.13、4n﹣1【解析】
分別數(shù)出圖、圖、圖中的三角形的個(gè)數(shù),可以發(fā)現(xiàn):第幾個(gè)圖形中三角形的個(gè)數(shù)就是4與幾的乘積減去如圖中三角形的個(gè)數(shù)為按照這個(gè)規(guī)律即可求出第n各圖形中有多少三角形.【詳解】分別數(shù)出圖、圖、圖中的三角形的個(gè)數(shù),圖中三角形的個(gè)數(shù)為;圖中三角形的個(gè)數(shù)為;圖中三角形的個(gè)數(shù)為;可以發(fā)現(xiàn),第幾個(gè)圖形中三角形的個(gè)數(shù)就是4與幾的乘積減去1.按照這個(gè)規(guī)律,如果設(shè)圖形的個(gè)數(shù)為n,那么其中三角形的個(gè)數(shù)為.故答案為.【點(diǎn)睛】此題主要考查學(xué)生對(duì)圖形變化類這個(gè)知識(shí)點(diǎn)的理解和掌握,解答此類題目的關(guān)鍵是根據(jù)題目中給出的圖形,數(shù)據(jù)等條件,通過認(rèn)真思考,歸納總結(jié)出規(guī)律,此類題目難度一般偏大,屬于難題.14、(2,1)【解析】∵一次函數(shù)y=ax+b,∴當(dāng)x=2,y=2a+b,又2a+b=1,∴當(dāng)x=2,y=1,即該圖象一定經(jīng)過點(diǎn)(2,1).故答案為(2,1).15、2【解析】
解:如圖,過D點(diǎn)作DG⊥AC,垂足為G,過A點(diǎn)作AH⊥BC,垂足為H,∵AB=AC,點(diǎn)E為BD的中點(diǎn),且AD=AB,∴設(shè)BE=DE=x,則AD=AF=1x.∵DG⊥AC,EF⊥AC,∴DG∥EF,∴,即,解得.∵DF∥BC,∴△ADF∽△ABC,∴,即,解得DF=1.又∵DF∥BC,∴∠DFG=∠C,∴Rt△DFG∽R(shí)t△ACH,∴,即,解得.在Rt△ABH中,由勾股定理,得.∴.又∵△ADF∽△ABC,∴,∴∴.故答案為:2.16、4【解析】
根據(jù)圓柱的側(cè)面積公式,計(jì)算即可.【詳解】圓柱的底面半徑為r=1,母線長(zhǎng)為l=2,則它的側(cè)面積為S側(cè)=2πrl=2π×1×2=4π.故答案為:4π.【點(diǎn)睛】題考查了圓柱的側(cè)面積公式應(yīng)用問題,是基礎(chǔ)題.17、>.【解析】
先利用估值的方法先得到≈3.4,再進(jìn)行比較即可.【詳解】解:∵≈3.4,3.4>3.∴>3.故答案為:>.【點(diǎn)睛】本題考查了實(shí)數(shù)的比較大小,對(duì)進(jìn)行合理估值是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐標(biāo)為(﹣3,0)或(﹣3,).【解析】
(3)先將A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出拋物線的表達(dá)式,再將E點(diǎn)坐標(biāo)代入表達(dá)式求出y的值即可;(3)①設(shè)直線BD的表達(dá)式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入求出k,b的值,再將x=0代入表達(dá)式求出D點(diǎn)坐標(biāo),當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),可得G點(diǎn)坐標(biāo),GF∥x軸,故可得F的縱坐標(biāo),再將y=﹣2代入拋物線的解析式求解可得點(diǎn)F的坐標(biāo),再根據(jù)m=FG即可得m的值;②設(shè)點(diǎn)F與點(diǎn)G的坐標(biāo),根據(jù)m=FG列出方程化簡(jiǎn)可得出m的二次函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的圖象可得m的取值范圍;(2)分別分析當(dāng)點(diǎn)F在x軸的左側(cè)時(shí)與右側(cè)時(shí)的兩種情況,根據(jù)△FDP與△FDG的面積比為3:3,故PD:DG=3:3.已知FP∥HD,則FH:HG=3:3.再分別設(shè)出F,G點(diǎn)的坐標(biāo),再根據(jù)兩點(diǎn)關(guān)系列出等式化簡(jiǎn)求解即可得F的坐標(biāo).【詳解】解:(3)將A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,解得:,∴拋物線的表達(dá)式為y=﹣x3+x+2,把E(﹣4,y)代入得:y=﹣6,∴點(diǎn)E的坐標(biāo)為(﹣4,﹣6).(3)①設(shè)直線BD的表達(dá)式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入得:,解得:,∴直線BD的表達(dá)式為y=x﹣2.把x=0代入y=x﹣2得:y=﹣2,∴D(0,﹣2).當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),G的坐標(biāo)為(0,﹣2).∵GF∥x軸,∴F的縱坐標(biāo)為﹣2.將y=﹣2代入拋物線的解析式得:﹣x3+x+2=﹣2,解得:x=+3或x=﹣+3.∵﹣4<x<4,∴點(diǎn)F的坐標(biāo)為(﹣+3,﹣2).∴m=FG=﹣3.②設(shè)點(diǎn)F的坐標(biāo)為(x,﹣x3+x+2),則點(diǎn)G的坐標(biāo)為(x+m,(x+m)﹣2),∴﹣x3+x+2=(x+m)﹣2,化簡(jiǎn)得,m=﹣x3+4,∵﹣<0,∴m有最大值,當(dāng)x=0時(shí),m的最大值為4.(2)當(dāng)點(diǎn)F在x軸的左側(cè)時(shí),如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設(shè)F的坐標(biāo)為(x,﹣x3+x+2),則點(diǎn)G的坐標(biāo)為(﹣3x,﹣x﹣2),∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴點(diǎn)F的坐標(biāo)為(﹣3,0).當(dāng)點(diǎn)F在x軸的右側(cè)時(shí),如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設(shè)F的坐標(biāo)為(x,﹣x3+x+2),則點(diǎn)G的坐標(biāo)為(3x,x﹣2),∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,解得:x=﹣3或x=﹣﹣3(舍去),∴點(diǎn)F的坐標(biāo)為(﹣3,).綜上所述,點(diǎn)F的坐標(biāo)為(﹣3,0)或(﹣3,).【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練的掌握二次函數(shù)的應(yīng)用.19、(1)7、7和8;(2)見解析;(3)第一次調(diào)查時(shí),平均每天的非機(jī)動(dòng)車逆向行駛的次數(shù)3次【解析】
(1)將數(shù)據(jù)按照從下到大的順序重新排列,再根據(jù)中位數(shù)和眾數(shù)的定義解答可得;(2)根據(jù)折線圖確定逆向行駛7次的天數(shù),從而補(bǔ)全直方圖;(3)利用加權(quán)平均數(shù)公式求得違章的平均次數(shù),從而求解.【詳解】解:(1)∵被抽查的數(shù)據(jù)重新排列為:5、5、6、7、7、7、8、8、8、9,∴中位數(shù)為=7,眾數(shù)是7和8,故答案為:7、7和8;(2)補(bǔ)全圖形如下:(3)∵第一次調(diào)查時(shí),平均每天的非機(jī)動(dòng)車逆向行駛的次數(shù)為=7(次),∴第一次調(diào)查時(shí),平均每天的非機(jī)動(dòng)車逆向行駛的次數(shù)3次.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù).20、(1)詳見解析;(2)【解析】
(1)連接OD,根據(jù)等邊對(duì)等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,證得OD∥AC,證得OD⊥DF,從而證得DF是⊙O的切線;(2)連接BE,AB是直徑,∠AEB=90°,根據(jù)勾股定理得出BE=2AE,CE=4AE,然后在Rt△BEC中,即可求得tanC的值.【詳解】(1)連接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切線;(2)連接BE,∵AB是直徑,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴BE=,在RT△BEC中,tanC=.21、(1)B(1,1);(2)y=(x﹣n)2+2﹣n.(3)a=;a=+1.【解析】
1)首先求得點(diǎn)A的坐標(biāo),再求得點(diǎn)B的坐標(biāo),用h表示出點(diǎn)D的坐標(biāo)后代入直線的解析式即可驗(yàn)證答案。(2)①根據(jù)兩種不同的表示形式得到m和h之間的函數(shù)關(guān)系即可。②點(diǎn)C作y軸的垂線,垂足為E,過點(diǎn)D作DF⊥CE于點(diǎn)F,證得△ACE~△CDF,然后用m表示出點(diǎn)C和點(diǎn)D的坐標(biāo),根據(jù)相似三角形的性質(zhì)求得m的值即可?!驹斀狻拷猓海?)當(dāng)x=0時(shí)候,y=﹣x+2=2,∴A(0,2),把A(0,2)代入y=(x﹣1)2+m,得1+m=2∴m=1.∴y=(x﹣1)2+1,∴B(1,1)(2)由(1)知,該拋物線的解析式為:y=(x﹣1)2+1,∵∵D(n,2﹣n),∴則平移后拋物線的解析式為:y=(x﹣n)2+2﹣n.故答案是:y=(x﹣n)2+2﹣n.(3)①∵C是兩個(gè)拋物線的交點(diǎn),∴點(diǎn)C的縱坐標(biāo)可以表示為:(a﹣1)2+1或(a﹣n)2﹣n+2由題意得(a﹣1)2+1=(a﹣n)2﹣n+2,整理得2an﹣2a=n2﹣n∵n>1∴a==.②過點(diǎn)C作y軸的垂線,垂足為E,過點(diǎn)D作DF⊥CE于點(diǎn)F∵∠ACD=90°,∴∠ACE=∠CDF又∵∠AEC=∠DFC∴△ACE∽△CDF∴=.又∵C(a,a2﹣2a+2),D(2a,2﹣2a),∴AE=a2﹣2a,DF=m2,CE=CF=a∴=∴a2﹣2a=1解得:a=±+1∵n>1∴a=>∴a=+1【點(diǎn)睛】本題主要考查二次函數(shù)的應(yīng)用和相似三角形的判定與性質(zhì),需綜合運(yùn)用各知識(shí)求解。22、(1)GF=GD,GF⊥GD;(2)見解析;(3)見解析;(4)90°﹣.【解析】
(1)根據(jù)四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,即可證明出∠DBF=90°,故GF⊥GD,再根據(jù)∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據(jù)四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設(shè)∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,再分別求出∠GFD與∠DBC的角度,再根據(jù)三角函數(shù)的性質(zhì)可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,BD,根據(jù)題意可證得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根據(jù)菱形的性質(zhì)可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【詳解】解:(1)GF=GD,GF⊥GD,理由:∵四邊形ABCD是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴點(diǎn)F,A,D在同一條線上,∵∠F=∠ADB,∴GF=GD,故答案為GF=GD,GF⊥GD;(2)連接AF,∵點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,∴直線AE是線段DF的垂直平分線,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四邊形ABCD是正方形,∴AB=AD,∠BAD=90°,設(shè)∠BAF=n,∴∠FAD=90°+n,∵AF=AD=AB,∴∠FAD=∠ABF,∴∠AFB+∠ABF=180°﹣n,∴∠AFB+∠ADG=180°﹣n,∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,∴GF⊥DG,(3)如圖2,連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,∵四邊形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,∴∠FDG=∠BDC,∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,∴∠FDB=∠GDC,在Rt△BDC中,sin∠DFG==sin45°=,在Rt△BDC中,sin∠DBC==sin45°=,∴,∴,∴△BDF∽△CDG,∵∠FDB=∠GDC,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG,∴CG∥DF;(4)90°﹣,理由:如圖3,連接AF,BD,∵點(diǎn)D與點(diǎn)F關(guān)于AE對(duì)稱,∴AE是線段DF的垂直平分線,∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四邊形ABCD是菱形,∴AB=AD,∴∠AFB=∠ABF=∠DFG+∠1,∵BD是菱形的對(duì)角線,∴∠ADB=∠ABD=α,在四邊形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣.【點(diǎn)睛】本題考查了正方形、菱形、相似三角形的性質(zhì),解題的根據(jù)是熟練的掌握正方形、菱形、相似三角形的性質(zhì).23、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤【解析】
(1)直接利用線段AB的“等長(zhǎng)點(diǎn)”的條件判斷;(2)分兩種情況討論,利用對(duì)稱性和垂直的性質(zhì)即可求出m,n;(3)先判斷出直線y=kx+3與圓A,B相切時(shí),如圖2所示,利用相似三角形的性質(zhì)即可求出結(jié)論.【詳解】(1)∵A(0,3),B(,0),∴AB=2,∵點(diǎn)C1(﹣2,3+2),∴AC1==2,∴AC1=AB,∴C1是線段AB的“等長(zhǎng)點(diǎn)”,∵點(diǎn)C2(0,﹣2),∴AC2=5,BC2==,∴AC2≠AB,BC2≠AB,∴C2不是線段AB的“等長(zhǎng)點(diǎn)”,∵點(diǎn)C3(3+,﹣),∴BC3==2,∴BC3=AB,∴C3是線段AB的“等長(zhǎng)點(diǎn)”;故答案為C1,C3;(2)如圖1,在Rt△AOB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025合作伙伴研究合同書
- 2025至2031年中國(guó)雙泡盒行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2031年中國(guó)加氫反應(yīng)器三通行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2030年中國(guó)錦綸四叉五環(huán)吊裝紡織繩數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)鍍鋁濕紙巾袋數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)迷你蘋果雙卡電視手機(jī)數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025至2030年中國(guó)熱熔技術(shù)布料油漆滾動(dòng)刷數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2025版合同:附條件租賃協(xié)議書
- 高校商鋪裝修方案范本
- 會(huì)計(jì)考證介紹培訓(xùn)
- 【土木工程畢業(yè)論文】施工組織設(shè)計(jì)
- 交互設(shè)計(jì)(精華)課件
- 護(hù)理病例分析試題題庫(kù)
- 開寵物店的創(chuàng)業(yè)計(jì)劃書
- 心外科常見疾病診療常規(guī)
- 設(shè)施規(guī)劃與物流分析課程設(shè)計(jì)-變速箱廠布置與搬運(yùn)系統(tǒng)設(shè)計(jì)
- 腫瘤靶向藥物治療
- MT-T 1201.6-2023 煤礦感知數(shù)據(jù)聯(lián)網(wǎng)接入規(guī)范 第6部分:工業(yè)視頻
- 數(shù)據(jù)結(jié)構(gòu)課件完整版
- 黃芩中黃芩苷的提取分離
- 2023屆匯文中學(xué)化學(xué)高一第二學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題含解析
評(píng)論
0/150
提交評(píng)論