2024年甘肅省蘭州市安寧區(qū)東方學(xué)校中考數(shù)學(xué)模擬試卷(一)_第1頁
2024年甘肅省蘭州市安寧區(qū)東方學(xué)校中考數(shù)學(xué)模擬試卷(一)_第2頁
2024年甘肅省蘭州市安寧區(qū)東方學(xué)校中考數(shù)學(xué)模擬試卷(一)_第3頁
2024年甘肅省蘭州市安寧區(qū)東方學(xué)校中考數(shù)學(xué)模擬試卷(一)_第4頁
2024年甘肅省蘭州市安寧區(qū)東方學(xué)校中考數(shù)學(xué)模擬試卷(一)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第1頁(共1頁)2024年甘肅省蘭州市安寧區(qū)東方學(xué)校中考數(shù)學(xué)模擬試卷(一)一、選擇題:本大題共12小題,每小題3分,共36分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.(3分)《國家寶藏》節(jié)目立足于中華文化寶庫資源.通過對文物的梳理與總結(jié),演繹文物背后的故事與歷史,讓更多的觀眾走進(jìn)博物館,其中是軸對稱圖形的是()A. B. C. D.2.(3分)計(jì)算(a2b)3?的結(jié)果是()A.a(chǎn)5b5 B.a(chǎn)4b5 C.a(chǎn)b5 D.a(chǎn)5b63.(3分)不等式組的解集在數(shù)軸上可以表示為()A. B. C. D.4.(3分)因式分解4b2﹣4ab+a2正確的是()A.4b(b﹣a)+a2 B.(2b﹣a)2 C.(2b﹣a)(2b﹣a) D.(2b+a)25.(3分)如圖是路政工程車的工作示意圖,工作籃底部與支撐平臺平行.若∠1=30°,∠2=50°()A.130° B.140° C.150° D.160°6.(3分)如圖的數(shù)軸上,點(diǎn)A,C對應(yīng)的實(shí)數(shù)分別為1,3,且AB長為1個(gè)單位長度,若以點(diǎn)C為圓心,則點(diǎn)P表示的實(shí)數(shù)為()A. B. C. D.7.(3分)若一次函數(shù)y=(k﹣1)x﹣2的函數(shù)值y隨x的增大而減小,則k值可能是()A.1 B.2 C.1.5 D.08.(3分)《九章算術(shù)》中有一題:“今有大器五、小器一容三斛;大器一、小器五容二斛.問大、小器各容幾何?”譯文:今有大容器5個(gè),小容器1個(gè)(斛:古代容量單位);大容器1個(gè),小容器5個(gè),問大容器、小容器的容量各是多少斛?設(shè)大容器的容量為x斛,小容器的容量為y斛()A. B. C. D.9.(3分)已知二次函數(shù)y=(k﹣3)x2+2x+1的圖象與x軸有交點(diǎn),則k的取值范圍是()A.k<4 B.k≤4且k≠3 C.k>4 D.k≤410.(3分)五一期間,某地相關(guān)部門對觀光游客的出行方式進(jìn)行了隨機(jī)抽樣調(diào)查,整理后繪制了兩幅統(tǒng)計(jì)圖(尚不完整),下列結(jié)論錯(cuò)誤的是()A.本次抽樣調(diào)查的樣本容量是5000 B.扇形統(tǒng)計(jì)圖中的m為10% C.扇形統(tǒng)計(jì)圖中“自駕”所對應(yīng)的扇形的圓心角是120° D.樣本中選擇公共交通出行的有2500人11.(3分)如圖,將正方形ABCD繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到正方形AEFG,點(diǎn)B的對應(yīng)點(diǎn)E落在正方形ABCD的對角線AC上,則的長為()A. B. C. D.12.(3分)如圖,在Rt△ABC中,∠ACB=90°,E為AD的中點(diǎn),F(xiàn)為BE的中點(diǎn),DF⊥BE,則DF的長為()A.1 B. C.2 D.2.5二、填空題:本大題共4小題,每小題3分,共12分.13.(3分)函數(shù)y=的自變量x的取值范圍是.14.(3分)中國古代的“四書”是指《論語》《孟子》《大學(xué)》《中庸》,它是儒家思想的核心著作,是中國傳統(tǒng)文化的重要組成部分.若從這四部著作中隨機(jī)抽取兩本(先隨機(jī)抽取一本,不放回,再隨機(jī)抽取另一本).15.(3分)如圖,△ABC與△DEF是位似圖形,點(diǎn)O為位似中心,則△DEF的周長是.16.(3分)已知正方形ABCD的邊長為4,若G為AB的中點(diǎn),連接DG交正方形的對角線AC于點(diǎn)E,F(xiàn)B⊥BE,則AF的長是.三、解答題:本大題共12小題,共72分.解答時(shí)寫出必要的文字說明、證明過程或演算步驟.17.(4分)計(jì)算:.18.(4分)解方程:﹣1=.19.(4分)先化簡,再求值:[(x﹣y)2+(x+y)(x﹣y)]÷2x,其中x=320.(5分)請閱讀下列材料,完成相應(yīng)的任務(wù):有這樣一個(gè)題目:設(shè)有兩只電阻,分別為R1和R2,問并聯(lián)后的電阻值R是多少?我們可以利用公式,求得R的值,也可以設(shè)計(jì)一種圖形直接得出結(jié)果如圖①,在直線l上任取兩點(diǎn)A、B,分別過點(diǎn)A、B作直線l的垂線1,BD=R2,且點(diǎn)C,D位于直線l的同側(cè),連接AD、BC,過點(diǎn)E作EF⊥直線1,則線段EF的長度就是并聯(lián)后的電阻值R.證明:∵EF⊥l,CA⊥l,∴∠EFB=∠CAB=90°,又∵∠EBF=∠CBA,∴△EBF∽△CBA(依據(jù)1),∴(依據(jù)2).同理可得:,∴,∴,∴,即:.任務(wù):(1)上述證明過程中的“依據(jù)1”和“依據(jù)2”分別是指:依據(jù)1:;依據(jù)2:;(2)如圖②,兩個(gè)電阻并聯(lián)在同一電路中,已知R1=3千歐,R2=6千歐,總阻值R=千歐;(3)請仿照①的作圖過程在圖③中(1個(gè)單位長度代表1千歐,例:AB=CD=9千歐)畫出(2)中表示該電路圖中總阻值R的線段長(保留作圖痕跡,不寫作法)21.(5分)綜合與實(shí)踐【問題情境】數(shù)學(xué)活動(dòng)課上,老師帶領(lǐng)同學(xué)們開展“利用樹葉的特征對樹木進(jìn)行分類”的實(shí)踐活動(dòng).【實(shí)踐發(fā)現(xiàn)】同學(xué)們隨機(jī)收集芒果樹、荔枝樹的樹葉各10片,通過測量得到這些樹葉的長y(單位:cm),寬x(單位:cm),分別計(jì)算長寬比,整理數(shù)據(jù)如下:12345678910芒果樹葉的長寬比3.83.73.53.43.84.03.64.03.64.0荔枝樹葉的長寬比2.02.02.02.41.81.91.82.01.31.9【實(shí)踐探究】分析數(shù)據(jù)如下:平均數(shù)中位數(shù)眾數(shù)方差芒果樹葉的長寬比3.74m4.00.0424荔枝樹葉的長寬比1.912.0n0.0669【問題解決】(1)上述表格中:m=,n=;(2)①A同學(xué)說:“從樹葉的長寬比的方差來看,我認(rèn)為芒果樹葉的形狀差別大.”②B同學(xué)說:“從樹葉的長寬比的平均數(shù)、中位數(shù)和眾數(shù)來看,我發(fā)現(xiàn)荔枝樹葉的長約為寬的兩倍.”上面兩位同學(xué)的說法中,合理的是(填序號);(3)現(xiàn)有一片長11cm,寬5.6cm的樹葉,請判斷這片樹葉更可能來自于芒果、荔枝中的哪種樹?并給出你的理由.22.(7分)在平面直角坐標(biāo)系中,已知k1k2≠0,設(shè)函數(shù)與函數(shù)y2=k2(x﹣2)+3的圖象交于點(diǎn)A,B.已知點(diǎn)A的橫坐標(biāo)是2,點(diǎn)B的縱坐標(biāo)是﹣1.(1)求k1,k2的值.(2)連接OA并延長至點(diǎn)P,使得OA=AP,過點(diǎn)P作x軸的垂線,交y1的圖象于點(diǎn)D,連接OD.設(shè)△OPD的面積為S1,△OCD的面積為S2,求的值.23.(6分)實(shí)驗(yàn)是培養(yǎng)學(xué)生的創(chuàng)新能力的重要途徑之一.如圖是小紅同學(xué)安裝的化學(xué)實(shí)驗(yàn)裝置,安裝要求為試管略向下傾斜,試管夾應(yīng)固定在距試管口的三分之一處.已知試管,BE=AB(1)求酒精燈與鐵架臺的水平距離CD的長度;(2)實(shí)驗(yàn)時(shí),當(dāng)導(dǎo)氣管緊貼水槽MN,延長BM交CN的延長線于點(diǎn)F(點(diǎn)C,D,N,F(xiàn)在一條直線上),經(jīng)測得:DE=21.7cm,MN=8cm,求線段DN的長度.(參考數(shù)據(jù):sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)24.(7分)如圖,在△ABC中,AB=AC.以AB為直徑的⊙O與BC交于點(diǎn)E,點(diǎn)F在邊AC的延長線上,且.(1)試說明FB是⊙O的切線;(2)過點(diǎn)C作CG⊥AF,垂足為C.若CF=4,BG=325.(7分)如圖,將?ABCD的邊AB延長到點(diǎn)E,使BE=AB,交BC于點(diǎn)F.(1)求證:△BEF≌△CDF;(2)連接BD,CE,若∠BFD=2∠A26.(6分)小明發(fā)現(xiàn)某乒乓球發(fā)球器有“直發(fā)式”與“間發(fā)式”兩種模式,在“直發(fā)式”模式下,球從發(fā)球器出口到第一次接觸臺面的運(yùn)動(dòng)軌跡近似為一條拋物線,球從發(fā)球器出口到第一次接觸臺面的運(yùn)動(dòng)軌跡近似為一條直線,球第一次接觸臺面到第二次接觸臺面的運(yùn)動(dòng)軌跡近似為一條拋物線.如圖1和圖2分別建立平面直角坐標(biāo)系xOy.通過測量得到球距離臺面高度y(單位:dm)與球距離發(fā)球器出口的水平距離x(單位:dm)的相關(guān)數(shù)據(jù)表1直發(fā)式x(dm)02468101620…y(dm)3.843.9643.96m3.642.561.44…表2間發(fā)式x(dm)024681012141618…y(dm)3.36n1.680.8401.402.4033.203…根據(jù)以上信息,回答問題:(1)表格中m=,n=;(2)求“直發(fā)式”模式下,球第一次接觸臺面前的運(yùn)動(dòng)軌跡的解析式;(3)若“直發(fā)式”模式下球第一次接觸臺面時(shí)距離出球點(diǎn)的水平距離為d1,“間發(fā)式”模式下球第二次接觸臺面時(shí)距離出球點(diǎn)的水平距離為d2,則d1d2(填“>”“=”或“<”).27.(8分)旋轉(zhuǎn)是幾何圖形中最基本的圖形變換之一,利用旋轉(zhuǎn)可將分散的條件相對集中,以達(dá)到解決問題的目的.【探究發(fā)現(xiàn)】如圖①,在等邊三角形ABC內(nèi)部有一點(diǎn)P,PA=2,PC=1,求∠BPC的度數(shù),連結(jié)AP′、PP′,則△BPC≌△BP′A,就可以解決這道問題.下面是小明的部分解答過程:解:將線段BP繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到線段BP′,連結(jié)AP′、PP′,∵BP=BP′,∠P′BP=60°,∴△PBP′是等邊三角形,∴∠BP′P=60°,PP′=PB=.∵△ABC是等邊三角形,∴∠ABC=60°,BC=BA,∴∠ABC﹣∠ABP=∠P′BP﹣∠ABP,即∠PBC=∠P′BA.(1)請你補(bǔ)全余下的解答過程.【類比遷移】(2)如圖②,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,PC=1,求∠BPC的度數(shù).【拓展延伸】(3)如圖③,在②的條件下,若正方形ABCD的邊長為2.28.(9分)在平面直角坐標(biāo)系xOy中,⊙O的半徑為1,對于直線l和線段PQ(P′,Q′分別為P,Q的對應(yīng)點(diǎn)),則稱線段PQ是⊙O關(guān)于直線l的“對稱弦”.(1)如圖,點(diǎn)A1,A2,A3,B1,B2,B3的橫、縱坐標(biāo)都是整數(shù).線段A1B1,A2B2,A3B3中,是⊙O關(guān)于直線y=x+1的“對稱弦”的是;(2)CD是⊙O關(guān)于直線y=kx(k≠0)的“對稱弦”,若點(diǎn)C的坐標(biāo)為(﹣1,0),求點(diǎn)D的坐標(biāo);(3)已知直線y=﹣x+b和點(diǎn)M(3,2),若線段MN是⊙O關(guān)于直線y=﹣,且MN=1,直接寫出b的值.

2024年甘肅省蘭州市安寧區(qū)東方學(xué)校中考數(shù)學(xué)模擬試卷(一)參考答案與試題解析一、選擇題:本大題共12小題,每小題3分,共36分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.(3分)《國家寶藏》節(jié)目立足于中華文化寶庫資源.通過對文物的梳理與總結(jié),演繹文物背后的故事與歷史,讓更多的觀眾走進(jìn)博物館,其中是軸對稱圖形的是()A. B. C. D.【解答】解:A、不是軸對稱圖形;B、是軸對稱圖形;C、不是軸對稱圖形;D、不是軸對稱圖形;故選:B.2.(3分)計(jì)算(a2b)3?的結(jié)果是()A.a(chǎn)5b5 B.a(chǎn)4b5 C.a(chǎn)b5 D.a(chǎn)5b6【解答】解:原式=a6b3?=a5b5,故選:A.3.(3分)不等式組的解集在數(shù)軸上可以表示為()A. B. C. D.【解答】解:解不等式得:1≤x<3,即表示4與3之間的數(shù)且包含3故選:B.4.(3分)因式分解4b2﹣4ab+a2正確的是()A.4b(b﹣a)+a2 B.(2b﹣a)2 C.(2b﹣a)(2b﹣a) D.(2b+a)2【解答】解:4b2﹣2ab+a2=(2b﹣a)7.故選:B.5.(3分)如圖是路政工程車的工作示意圖,工作籃底部與支撐平臺平行.若∠1=30°,∠2=50°()A.130° B.140° C.150° D.160°【解答】解:如圖所示,過∠2頂點(diǎn)作直線l∥支撐平臺,∵工作籃底部與支撐平臺平行、直線l∥支撐平臺,∴直線l∥支撐平臺∥工作籃底部,∴∠1=∠8=30°、∠5+∠3=180°,∵∠3+∠5=∠2=50°,∴∠2=50°﹣∠4=20°,∴∠3=180°﹣∠4=160°,故選:D.6.(3分)如圖的數(shù)軸上,點(diǎn)A,C對應(yīng)的實(shí)數(shù)分別為1,3,且AB長為1個(gè)單位長度,若以點(diǎn)C為圓心,則點(diǎn)P表示的實(shí)數(shù)為()A. B. C. D.【解答】解:由題意可得∠BAC=90°,AB=1,則CB==,那么點(diǎn)P表示的實(shí)數(shù)為3﹣,故選:A.7.(3分)若一次函數(shù)y=(k﹣1)x﹣2的函數(shù)值y隨x的增大而減小,則k值可能是()A.1 B.2 C.1.5 D.0【解答】解:∵一次函數(shù)y=(k﹣1)x﹣2的函數(shù)值y隨著x的增大而減小,∴k﹣6<0,解得k<1,所以k的值可以是4.故選:D.8.(3分)《九章算術(shù)》中有一題:“今有大器五、小器一容三斛;大器一、小器五容二斛.問大、小器各容幾何?”譯文:今有大容器5個(gè),小容器1個(gè)(斛:古代容量單位);大容器1個(gè),小容器5個(gè),問大容器、小容器的容量各是多少斛?設(shè)大容器的容量為x斛,小容器的容量為y斛()A. B. C. D.【解答】解:由題意得:,故選:B.9.(3分)已知二次函數(shù)y=(k﹣3)x2+2x+1的圖象與x軸有交點(diǎn),則k的取值范圍是()A.k<4 B.k≤4且k≠3 C.k>4 D.k≤4【解答】依題意得:k﹣3≠0,解得k≠8,Δ=b2﹣4ac=72﹣4×(k﹣4)×1≥0,解得k≤4,故選:B.10.(3分)五一期間,某地相關(guān)部門對觀光游客的出行方式進(jìn)行了隨機(jī)抽樣調(diào)查,整理后繪制了兩幅統(tǒng)計(jì)圖(尚不完整),下列結(jié)論錯(cuò)誤的是()A.本次抽樣調(diào)查的樣本容量是5000 B.扇形統(tǒng)計(jì)圖中的m為10% C.扇形統(tǒng)計(jì)圖中“自駕”所對應(yīng)的扇形的圓心角是120° D.樣本中選擇公共交通出行的有2500人【解答】解:A.本次抽樣調(diào)查的樣本容量是2000÷40%=5000,不符合題意;B.扇形統(tǒng)計(jì)圖中的m為1﹣(50%+40%)=10%,不符合題意;C.扇形統(tǒng)計(jì)圖中自家對應(yīng)的圓心角為:360°×40%=144°,故不符合題意;D.樣本中選擇公共交通出行的約有5000×50%=2500(人),不符合題意;故選:C.11.(3分)如圖,將正方形ABCD繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到正方形AEFG,點(diǎn)B的對應(yīng)點(diǎn)E落在正方形ABCD的對角線AC上,則的長為()A. B. C. D.【解答】解:∵正方形AEFG,∴AE=FE,∠E=90°,∴∠FAE=45°,∵AD=1,正方形AEFG是由正方形ABCD繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)所得,∴AE=FE=1,∴,∴的長=,故選:B.12.(3分)如圖,在Rt△ABC中,∠ACB=90°,E為AD的中點(diǎn),F(xiàn)為BE的中點(diǎn),DF⊥BE,則DF的長為()A.1 B. C.2 D.2.5【解答】解:連接CE,∵AD是BC邊上的中線,F(xiàn)點(diǎn)為BE的中點(diǎn),∴DF為△BCE的中位線,∴CE=2DF,DF∥CE,∴∠BDF=∠DCE,∠EDF=∠DEC,∵DF⊥BE,∴∠DFE=∠DFB=90°,在△DEF和△DBF中,,∴△DEF≌△DBF(SAS),∴∠EDF=∠BDF,∴∠DEC=∠DCE,∴CD=ED,∵E為AD的中點(diǎn),∠ACB=90°,∴CE=ED=CD=AD,∴AD=4DF,∵AC=,∴AD2﹣(AD)2=AC2=48,解得AD=3,∴DF=2.故選:C.二、填空題:本大題共4小題,每小題3分,共12分.13.(3分)函數(shù)y=的自變量x的取值范圍是x≥1.【解答】解:依題意,得x﹣1≥0,解得x≥4.14.(3分)中國古代的“四書”是指《論語》《孟子》《大學(xué)》《中庸》,它是儒家思想的核心著作,是中國傳統(tǒng)文化的重要組成部分.若從這四部著作中隨機(jī)抽取兩本(先隨機(jī)抽取一本,不放回,再隨機(jī)抽取另一本).【解答】解:把《論語》《孟子》《大學(xué)》《中庸》分別記為A、B、C、D,畫樹狀圖如下:共有12種等可能的情況,其中抽取的兩本恰好是《論語》和《大學(xué)》的結(jié)果有2種、CA,∴抽取的兩本恰好是《論語》和《大學(xué)》的概率是=,故答案為:.15.(3分)如圖,△ABC與△DEF是位似圖形,點(diǎn)O為位似中心,則△DEF的周長是12.【解答】解:∵OC:CF=1:2,∴OC:OF=2:3,∵△ABC與△DEF是位似圖形,∴△ABC∽△DEF,BC∥EF,∴△BOC∽△EOF,∴==,∴△ABC的周長:△DEF的周長=1:3,∵△ABC的周長為4,∴△DEF的周長為:4×3=12,故答案為:12.16.(3分)已知正方形ABCD的邊長為4,若G為AB的中點(diǎn),連接DG交正方形的對角線AC于點(diǎn)E,F(xiàn)B⊥BE,則AF的長是.【解答】解:過點(diǎn)F作FH⊥AB于H,∵四邊形ABCD是正方形,AC為對角線,∴AB=AD,∠BAE=∠DAE=45°,∴△ABE≌△ADE(SAS),∴BE=DE.∠ABE=∠ADE,又∵∠ABE+∠EBC=∠ADE+∠EDC=90°,∴∠EBC=∠EDC.又∵∠ABE+∠FBG=90°,∴∠FBG=∠EBC.∵AB∥CD,∴∠FGB=∠EDC.∴∠FBG=∠FGB.∴BF=FG,∵FH⊥AB,∴GH=BH,∵AB=4,G是AB的中點(diǎn),∴AG=GB=2,∴GH=BH=5,∴AH=3,∵∠FHG=∠DAG=90°,∠FGH=∠DGA,∴△FHG∽△DAG∴,即,∴FH=2.∴AF===,故答案為:.三、解答題:本大題共12小題,共72分.解答時(shí)寫出必要的文字說明、證明過程或演算步驟.17.(4分)計(jì)算:.【解答】解:===.18.(4分)解方程:﹣1=.【解答】解:方程去分母得:3y﹣3(y﹣5)=2y,解得:y=,檢驗(yàn):當(dāng)y=時(shí),8y﹣3≠0,故原方程的解為y=.19.(4分)先化簡,再求值:[(x﹣y)2+(x+y)(x﹣y)]÷2x,其中x=3【解答】解:解法一:[(x﹣y)2+(x+y)(x﹣y)]÷2x,=(x﹣y)[(x﹣y)+(x+y)]÷2x,=(2x2﹣5xy)÷2x,=x﹣y,當(dāng)x=3,y=﹣6.5時(shí);解法二:[(x﹣y)2+(x+y)(x﹣y)]÷6x,=[(x2﹣2xy+y4)+(x2﹣y2)]÷7x,=(2x2﹣4xy)÷2x,=x﹣y,當(dāng)x=3,y=﹣5.5時(shí).20.(5分)請閱讀下列材料,完成相應(yīng)的任務(wù):有這樣一個(gè)題目:設(shè)有兩只電阻,分別為R1和R2,問并聯(lián)后的電阻值R是多少?我們可以利用公式,求得R的值,也可以設(shè)計(jì)一種圖形直接得出結(jié)果如圖①,在直線l上任取兩點(diǎn)A、B,分別過點(diǎn)A、B作直線l的垂線1,BD=R2,且點(diǎn)C,D位于直線l的同側(cè),連接AD、BC,過點(diǎn)E作EF⊥直線1,則線段EF的長度就是并聯(lián)后的電阻值R.證明:∵EF⊥l,CA⊥l,∴∠EFB=∠CAB=90°,又∵∠EBF=∠CBA,∴△EBF∽△CBA(依據(jù)1),∴(依據(jù)2).同理可得:,∴,∴,∴,即:.任務(wù):(1)上述證明過程中的“依據(jù)1”和“依據(jù)2”分別是指:依據(jù)1:兩組角對應(yīng)相等的兩個(gè)三角形相似;依據(jù)2:相似三角形的對應(yīng)邊成比例;(2)如圖②,兩個(gè)電阻并聯(lián)在同一電路中,已知R1=3千歐,R2=6千歐,總阻值R=2千歐;(3)請仿照①的作圖過程在圖③中(1個(gè)單位長度代表1千歐,例:AB=CD=9千歐)畫出(2)中表示該電路圖中總阻值R的線段長(保留作圖痕跡,不寫作法)【解答】解:(1)證明:∵EF⊥l,CA⊥l,∴∠EFB=∠CAB=90°,又∵∠EBF=∠CBA,∴△EBF∽△CBA(兩組角對應(yīng)相等的兩個(gè)三角形相似),∴(相似三角形的對應(yīng)邊成比例).故答案為:兩組角對應(yīng)相等的兩個(gè)三角形相似,相似三角形的對應(yīng)邊成比例;(2)∵=+,R5=3千歐,R2=3千歐,∴R=2(千歐),故答案為:2;(3)如圖,線段EF表示R的長.在AB上取點(diǎn)M,使BM=4,連接CM,過點(diǎn)E作EF⊥BC于點(diǎn)F,則線段EF為所求線段.21.(5分)綜合與實(shí)踐【問題情境】數(shù)學(xué)活動(dòng)課上,老師帶領(lǐng)同學(xué)們開展“利用樹葉的特征對樹木進(jìn)行分類”的實(shí)踐活動(dòng).【實(shí)踐發(fā)現(xiàn)】同學(xué)們隨機(jī)收集芒果樹、荔枝樹的樹葉各10片,通過測量得到這些樹葉的長y(單位:cm),寬x(單位:cm),分別計(jì)算長寬比,整理數(shù)據(jù)如下:12345678910芒果樹葉的長寬比3.83.73.53.43.84.03.64.03.64.0荔枝樹葉的長寬比2.02.02.02.41.81.91.82.01.31.9【實(shí)踐探究】分析數(shù)據(jù)如下:平均數(shù)中位數(shù)眾數(shù)方差芒果樹葉的長寬比3.74m4.00.0424荔枝樹葉的長寬比1.912.0n0.0669【問題解決】(1)上述表格中:m=3.75,n=2.0;(2)①A同學(xué)說:“從樹葉的長寬比的方差來看,我認(rèn)為芒果樹葉的形狀差別大.”②B同學(xué)說:“從樹葉的長寬比的平均數(shù)、中位數(shù)和眾數(shù)來看,我發(fā)現(xiàn)荔枝樹葉的長約為寬的兩倍.”上面兩位同學(xué)的說法中,合理的是②(填序號);(3)現(xiàn)有一片長11cm,寬5.6cm的樹葉,請判斷這片樹葉更可能來自于芒果、荔枝中的哪種樹?并給出你的理由.【解答】解:(1)把10片芒果樹葉的長寬比從小到大排列,排在中間的兩個(gè)數(shù)分別為3.7,故m=;10片荔枝樹葉的長寬比中出現(xiàn)次數(shù)最多的是2.7,故n=2.0;故答案為:2.75;2.0;(2)∵2.0424<0.0669,∴芒果樹葉的形狀差別小,故A同學(xué)說法不合理;∵荔枝樹葉的長寬比的平均數(shù)1.91,中位數(shù)是4.95,∴B同學(xué)說法合理.故答案為:②;(3)∵11÷5.6≈3.96,∴這片樹葉更可能是荔枝樹葉.22.(7分)在平面直角坐標(biāo)系中,已知k1k2≠0,設(shè)函數(shù)與函數(shù)y2=k2(x﹣2)+3的圖象交于點(diǎn)A,B.已知點(diǎn)A的橫坐標(biāo)是2,點(diǎn)B的縱坐標(biāo)是﹣1.(1)求k1,k2的值.(2)連接OA并延長至點(diǎn)P,使得OA=AP,過點(diǎn)P作x軸的垂線,交y1的圖象于點(diǎn)D,連接OD.設(shè)△OPD的面積為S1,△OCD的面積為S2,求的值.【解答】解:(1)∵點(diǎn)A的橫坐標(biāo)是2,∴將x=2代入y8=k2(x﹣2)+4=3,∴A(2,2),∴將A(2,3)代入1=2,∴y1=,∵點(diǎn)B的縱坐標(biāo)是﹣2,∴將y=﹣1代入得,x=﹣6,∴B(﹣8,﹣1).∴將B(﹣6,﹣2)代入y2=k2(x﹣7)+3得:﹣1=k7(﹣6﹣2)+3,解得:k2=.(2)作AE⊥x軸于E,則S△AOE=k8,∵過點(diǎn)P作x軸的垂線,交x軸于點(diǎn)C1的圖象于點(diǎn)D,∴S2=,AE∥PC,∴△OAE∽△OPC,∴=()7=4,∴S△OPC=4S△OAE=6k1,∴S1=S△OPC﹣S8=2k1﹣=k1,∴==3.23.(6分)實(shí)驗(yàn)是培養(yǎng)學(xué)生的創(chuàng)新能力的重要途徑之一.如圖是小紅同學(xué)安裝的化學(xué)實(shí)驗(yàn)裝置,安裝要求為試管略向下傾斜,試管夾應(yīng)固定在距試管口的三分之一處.已知試管,BE=AB(1)求酒精燈與鐵架臺的水平距離CD的長度;(2)實(shí)驗(yàn)時(shí),當(dāng)導(dǎo)氣管緊貼水槽MN,延長BM交CN的延長線于點(diǎn)F(點(diǎn)C,D,N,F(xiàn)在一條直線上),經(jīng)測得:DE=21.7cm,MN=8cm,求線段DN的長度.(參考數(shù)據(jù):sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)【解答】解:(1)過點(diǎn)E作EG⊥AC于點(diǎn)G,∵AB=30cm,BE=,∴BE=10cm,AE=20cm,∵∠AEG=α=10°,∴GE=AE?cosα=20×cos10°≈19.5(cm),∴CD=GE=19.6cm,答:酒精燈與鐵架臺的水平距離CD的長度為19.6cm;(2)過點(diǎn)B作BH⊥CF于點(diǎn)H,BP⊥DE于點(diǎn)P,則BP=BE?cosα=10×cos10°≈4.8(cm),EP=BE?sinα=10×sin10°≈1.2(cm),∵DE=21.7cm,∴PD=DE﹣EP=21.7﹣5.7=20(cm),∴BH=20cm,∵M(jìn)N=8cm,∴QH=8cm,∴BQ=BH﹣QH=20﹣8=12(cm),∵∠ABM=145°,∴∠QBM=∠ABM﹣α﹣90°=145°﹣10﹣90°=45°,∴QM=BQ=12cm,∴DN=DH+HN=BP+QM=9.4+12=21.8(cm),答:線段DN的長度為21.8cm.24.(7分)如圖,在△ABC中,AB=AC.以AB為直徑的⊙O與BC交于點(diǎn)E,點(diǎn)F在邊AC的延長線上,且.(1)試說明FB是⊙O的切線;(2)過點(diǎn)C作CG⊥AF,垂足為C.若CF=4,BG=3【解答】解:(1)連接AE,∵AB為直徑,∴∠AEB=90°,∵AB=AC,,∴=∠BAE,∴∠ABF=∠CBF+∠ABE=∠BAE+∠ABE=90°,∴FB是⊙O的切線;(2)連接BD,∵AB=AC,∴∠ABC=∠ACB,∵CG⊥AF,∴∠GCB=90°﹣∠ACB=90°﹣∠ABC=∠GBC,∴GC=GB=3,∵CF=3,∴FG=5,∴FB=5+4=8,∵tanF=,∴AB=6,∴⊙O的半徑=4.25.(7分)如圖,將?ABCD的邊AB延長到點(diǎn)E,使BE=AB,交BC于點(diǎn)F.(1)求證:△BEF≌△CDF;(2)連接BD,CE,若∠BFD=2∠A【解答】(1)證明:∵四邊形ABCD是平行四邊形,∵AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,在△BEF與△CDF中,,∴△BEF≌△CDF(ASA);(2)解:四邊形BECD是矩形.證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵AB=BE,∴CD=EB,∴四邊形BECD是平行四邊形,∴BF=CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四邊形BECD是矩形.26.(6分)小明發(fā)現(xiàn)某乒乓球發(fā)球器有“直發(fā)式”與“間發(fā)式”兩種模式,在“直發(fā)式”模式下,球從發(fā)球器出口到第一次接觸臺面的運(yùn)動(dòng)軌跡近似為一條拋物線,球從發(fā)球器出口到第一次接觸臺面的運(yùn)動(dòng)軌跡近似為一條直線,球第一次接觸臺面到第二次接觸臺面的運(yùn)動(dòng)軌跡近似為一條拋物線.如圖1和圖2分別建立平面直角坐標(biāo)系xOy.通過測量得到球距離臺面高度y(單位:dm)與球距離發(fā)球器出口的水平距離x(單位:dm)的相關(guān)數(shù)據(jù)表1直發(fā)式x(dm)02468101620…y(dm)3.843.9643.96m3.642.561.44…表2間發(fā)式x(dm)024681012141618…y(dm)3.36n1.680.8401.402.4033.203…根據(jù)以上信息,回答問題:(1)表格中m=3.84,n=2.52;(2)求“直發(fā)式”模式下,球第一次接觸臺面前的運(yùn)動(dòng)軌跡的解析式;(3)若“直發(fā)式”模式下球第一次接觸臺面時(shí)距離出球點(diǎn)的水平距離為d1,“間發(fā)式”模式下球第二次接觸臺面時(shí)距離出球點(diǎn)的水平距離為d2,則d1=d2(填“>”“=”或“<”).【解答】解:(1)由拋物線的對稱性及已知表1中的數(shù)據(jù)可知:m=3.84;在“間發(fā)式“模式下,球從發(fā)球器出口到第一次接觸臺面的運(yùn)動(dòng)軌跡近似為一條直線,設(shè)這條直線的解析式為y=kx+b(k≠4),把(0、(8,得,解得:,∴這條直線的解析式為y=﹣0.42x+5.36,當(dāng)x=2時(shí),y=﹣0.42×8+3.36=2.52,表格3中,n=2.52;故答案為:3.84,6.52;(2)由已知表1中的數(shù)據(jù)及拋物線的對稱性可知:“直發(fā)式“模式下,拋物線的頂點(diǎn)為(4,∴設(shè)此拋物線的解析式為y=a(x﹣2)2+4(a<3),把(0,3.84)代入2+4,解得:α=﹣0.01,∴“直發(fā)式“模式下,球第一次接觸臺面前的運(yùn)動(dòng)軌跡的解析式為y=﹣8.01(x﹣4)2+5;(3)當(dāng)y=0時(shí),0=﹣2.01(x﹣4)2+4,解得:x1=﹣16(舍去),x2=24,∴“直發(fā)式”模式下球第一次接觸臺面時(shí)距離出球點(diǎn)的水平距離為d6=24;“間發(fā)式“模式下,球第一次接觸臺面到第二次接觸臺面的運(yùn)動(dòng)軌跡近似為一條拋物線,由已知表2中的數(shù)據(jù)及拋物線的對稱性可知:“間發(fā)式“模式下,這條拋物線的頂點(diǎn)坐標(biāo)為(16,∴設(shè)這條拋物線的解析式為y=m(x﹣16)2+2.2(m<0),把(8,0)代入2+7.2,解得:m=﹣0.05,∴這條拋物線的解析式為y=﹣2.05(x﹣16)2+3.8,當(dāng)y=0時(shí),0=﹣2.05(x﹣16)2+3.7,解得:x1=8,x6=24,∴d2=24dm,∴d1=d3,故答案為:=.27.(8分)旋轉(zhuǎn)是幾何圖形中最基本的圖形變換之一,利用旋轉(zhuǎn)可將分散的條件相對集中,以達(dá)到解決問題的目的.【探究發(fā)現(xiàn)】如圖①,在等邊三角形ABC內(nèi)部有一點(diǎn)P,PA=2,PC=1,求∠BPC的度數(shù),連結(jié)AP′、PP′,則△BPC≌△BP′A,就可以解決這道問題.下面是小明的部分解答過程:解:將線段BP繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到線段BP′,連結(jié)AP′、PP′,∵BP=BP′,∠P′BP=60°,∴△PBP′是等邊三角形,∴∠BP′P=60°,PP′=PB=.∵△ABC是等邊三角形,∴∠ABC=60°,BC=BA,∴∠ABC﹣∠ABP=∠P′BP﹣∠ABP,即∠PBC=∠P′BA.(1)請你補(bǔ)全余下的解答過程.【類比遷移】(2)如圖②,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,PC=1,求∠BPC的度數(shù).【拓展延伸】(3)如圖③,在②的條件下,若正方形ABCD的邊長為2.【解答】解:(1)∴△ABP′≌△C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論