廣東省深圳市龍崗區(qū)南灣校2022年中考數(shù)學模擬試題含解析_第1頁
廣東省深圳市龍崗區(qū)南灣校2022年中考數(shù)學模擬試題含解析_第2頁
廣東省深圳市龍崗區(qū)南灣校2022年中考數(shù)學模擬試題含解析_第3頁
廣東省深圳市龍崗區(qū)南灣校2022年中考數(shù)學模擬試題含解析_第4頁
廣東省深圳市龍崗區(qū)南灣校2022年中考數(shù)學模擬試題含解析_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省深圳市龍崗區(qū)南灣校2022年中考數(shù)學模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.小蘇和小林在如圖①所示的跑道上進行米折返跑.在整個過程中,跑步者距起跑線的距離(單位:)與跑步時間(單位:)的對應(yīng)關(guān)系如圖②所示.下列敘述正確的是().A.兩人從起跑線同時出發(fā),同時到達終點B.小蘇跑全程的平均速度大于小林跑全程的平均速度C.小蘇前跑過的路程大于小林前跑過的路程D.小林在跑最后的過程中,與小蘇相遇2次2.一、單選題二次函數(shù)的圖象如圖所示,對稱軸為x=1,給出下列結(jié)論:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正確的結(jié)論有:A.4個 B.3個 C.2個 D.1個3.下列運算正確的是()A.=2 B.4﹣=1 C.=9 D.=24.如圖,有一張三角形紙片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿著箭頭方向剪開,可能得不到全等三角形紙片的是()A. B.C. D.5.如圖,矩形紙片中,,,將沿折疊,使點落在點處,交于點,則的長等于()A. B. C. D.6.如圖,直線AB與?MNPQ的四邊所在直線分別交于A、B、C、D,則圖中的相似三角形有()A.4對B.5對C.6對D.7對7.如下字體的四個漢字中,是軸對稱圖形的是()A. B. C. D.8.如圖中任意畫一個點,落在黑色區(qū)域的概率是()A. B. C.π D.509.如圖,已知△ABC,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點M,N;②作直線MN交AB于點D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數(shù)為()A.90° B.95° C.105° D.110°10.下列說法:①-102②數(shù)軸上的點與實數(shù)成一一對應(yīng)關(guān)系;③﹣2是16的平方根;④任何實數(shù)不是有理數(shù)就是無理數(shù);⑤兩個無理數(shù)的和還是無理數(shù);⑥無理數(shù)都是無限小數(shù),其中正確的個數(shù)有()A.2個 B.3個 C.4個 D.5個二、填空題(共7小題,每小題3分,滿分21分)11.已知線段AB=10cm,C為線段AB的黃金分割點(AC>BC),則BC=_____.12.計算:的結(jié)果為_____.13.如圖,邊長為4的正方形ABCD內(nèi)接于⊙O,點E是弧AB上的一動點(不與點A、B重合),點F是弧BC上的一點,連接OE,OF,分別與交AB,BC于點G,H,且∠EOF=90°,連接GH,有下列結(jié)論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為4+2.其中正確的是_____.(把你認為正確結(jié)論的序號都填上)14.已知關(guān)于x的方程x2+(1-m)x+m15.用48米長的竹籬笆在空地上,圍成一個綠化場地,現(xiàn)有兩種設(shè)計方案,一種是圍成正方形的場地;另一種是圍成圓形場地.現(xiàn)請你選擇,圍成________(圓形、正方形兩者選一)場在面積較大.16.關(guān)于x的不等式組有2個整數(shù)解,則a的取值范圍是____________.17.把兩個同樣大小的含45°角的三角尺按如圖所示的方式放置,其中一個三角尺的銳角頂點與另一個的直角頂點重合于點A,且另三個銳角頂點B,C,D在同一直線上.若AB=,則CD=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,將矩形OABC放在平面直角坐標系中,O為原點,點A在x軸的正半軸上,B(8,6),點D是射線AO上的一點,把△BAD沿直線BD折疊,點A的對應(yīng)點為A′.(1)若點A′落在矩形的對角線OB上時,OA′的長=;(2)若點A′落在邊AB的垂直平分線上時,求點D的坐標;(3)若點A′落在邊AO的垂直平分線上時,求點D的坐標(直接寫出結(jié)果即可).19.(5分)綜合與探究如圖,拋物線y=﹣與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,直線l經(jīng)過B,C兩點,點M從點A出發(fā)以每秒1個單位長度的速度向終點B運動,連接CM,將線段MC繞點M順時針旋轉(zhuǎn)90°得到線段MD,連接CD,BD.設(shè)點M運動的時間為t(t>0),請解答下列問題:(1)求點A的坐標與直線l的表達式;(2)①直接寫出點D的坐標(用含t的式子表示),并求點D落在直線l上時的t的值;②求點M運動的過程中線段CD長度的最小值;(3)在點M運動的過程中,在直線l上是否存在點P,使得△BDP是等邊三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.20.(8分)徐州至北京的高鐵里程約為700km,甲、乙兩人從徐州出發(fā),分別乘坐“徐州號”高鐵A與“復興號”高鐵B前往北京.已知A車的平均速度比B車的平均速度慢80km/h,A車的行駛時間比B車的行駛時間多40%,兩車的行駛時間分別為多少?21.(10分)為了解今年初三學生的數(shù)學學習情況,某校對上學期的數(shù)學成績作了統(tǒng)計分析,繪制得到如下圖表.請結(jié)合圖表所給出的信息解答下列問題:成績頻數(shù)頻率優(yōu)秀45b良好a0.3合格1050.35不合格60c(1)該校初三學生共有多少人?求表中a,b,c的值,并補全條形統(tǒng)計圖.初三(一)班數(shù)學老師準備從成績優(yōu)秀的甲、乙、丙、丁四名同學中任意抽取兩名同學做學習經(jīng)驗介紹,求恰好選中甲、乙兩位同學的概率.22.(10分)已知邊長為2a的正方形ABCD,對角線AC、BD交于點Q,對于平面內(nèi)的點P與正方形ABCD,給出如下定義:如果,則稱點P為正方形ABCD的“關(guān)聯(lián)點”.在平面直角坐標系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“關(guān)聯(lián)點”有_____;(2)已知點E的橫坐標是m,若點E在直線上,并且E是正方形ABCD的“關(guān)聯(lián)點”,求m的取值范圍;(3)若將正方形ABCD沿x軸平移,設(shè)該正方形對角線交點Q的橫坐標是n,直線與x軸、y軸分別相交于M、N兩點.如果線段MN上的每一個點都是正方形ABCD的“關(guān)聯(lián)點”,求n的取值范圍.23.(12分)某市出租車計費方法如圖所示,x(km)表示行駛里程,y(元)表示車費,請根據(jù)圖象回答下列問題:出租車的起步價是多少元?當x>3時,求y關(guān)于x的函數(shù)關(guān)系式;若某乘客有一次乘出租車的車費為32元,求這位乘客乘車的里程.24.(14分)如圖1,拋物線y=ax2+bx+4過A(2,0)、B(4,0)兩點,交y軸于點C,過點C作x軸的平行線與拋物線上的另一個交點為D,連接AC、BC.點P是該拋物線上一動點,設(shè)點P的橫坐標為m(m>4).(1)求該拋物線的表達式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過點A、P的直線與y軸于點N,過點P作PM⊥CD,垂足為M,直線MN與x軸交于點Q,試判斷四邊形ADMQ的形狀,并說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

A.由圖可看出小林先到終點,A錯誤;B.全程路程一樣,小林用時短,所以小林的平均速度大于小蘇的平均速度,B錯誤;C.第15秒時,小蘇距離起點較遠,兩人都在返回起點的過程中,據(jù)此可判斷小林跑的路程大于小蘇跑的路程,C錯誤;D.由圖知兩條線的交點是兩人相遇的點,所以是相遇了兩次,正確.故選D.2、B【解析】試題解析:①∵二次函數(shù)的圖象的開口向下,∴a<0,∵二次函數(shù)的圖象y軸的交點在y軸的正半軸上,∴c>0,∵二次函數(shù)圖象的對稱軸是直線x=1,∴2a+b=0,b>0∴abc<0,故正確;②∵拋物線與x軸有兩個交點,故正確;③∵二次函數(shù)圖象的對稱軸是直線x=1,∴拋物線上x=0時的點與當x=2時的點對稱,即當x=2時,y>0∴4a+2b+c>0,故錯誤;④∵二次函數(shù)圖象的對稱軸是直線x=1,∴2a+b=0,故正確.綜上所述,正確的結(jié)論有3個.故選B.3、A【解析】

根據(jù)二次根式的性質(zhì)對A進行判斷;根據(jù)二次根式的加減法對B進行判斷;根據(jù)二次根式的除法法則對C進行判斷;根據(jù)二次根式的乘法法則對D進行判斷.【詳解】A、原式=2,所以A選項正確;B、原式=4-3=,所以B選項錯誤;C、原式==3,所以C選項錯誤;D、原式=,所以D選項錯誤.故選A.【點睛】本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當?shù)慕忸}途徑,往往能事半功倍.4、C【解析】

根據(jù)全等三角形的判定定理進行判斷.【詳解】解:A、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;B、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;C、如圖1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其對應(yīng)邊應(yīng)該是BE和CF,而已知給的是BD=FC=3,所以不能判定兩個小三角形全等,故本選項符合題意;D、如圖2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定兩個小三角形全等,故本選項不符合題意;由于本題選擇可能得不到全等三角形紙片的圖形,故選C.【點睛】本題考查了全等三角形的判定,注意三角形邊和角的對應(yīng)關(guān)系是關(guān)鍵.5、B【解析】

由折疊的性質(zhì)得到AE=AB,∠E=∠B=90°,易證Rt△AEF≌Rt△CDF,即可得到結(jié)論EF=DF;易得FC=FA,設(shè)FA=x,則FC=x,F(xiàn)D=6-x,在Rt△CDF中利用勾股定理得到關(guān)于x的方程x2=42+(6-x)2,解方程求出x即可.【詳解】∵矩形ABCD沿對角線AC對折,使△ABC落在△ACE的位置,

∴AE=AB,∠E=∠B=90°,

又∵四邊形ABCD為矩形,

∴AB=CD,

∴AE=DC,

而∠AFE=∠DFC,

∵在△AEF與△CDF中,,∴△AEF≌△CDF(AAS),

∴EF=DF;

∵四邊形ABCD為矩形,

∴AD=BC=6,CD=AB=4,

∵Rt△AEF≌Rt△CDF,

∴FC=FA,

設(shè)FA=x,則FC=x,F(xiàn)D=6-x,

在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,則FD=6-x=.故選B.【點睛】考查了折疊的性質(zhì):折疊前后兩圖形全等,即對應(yīng)角相等,對應(yīng)邊相等.也考查了矩形的性質(zhì)和三角形全等的判定與性質(zhì)以及勾股定理.6、C【解析】由題意,AQ∥NP,MN∥BQ,∴△ACM∽△DCN,△CDN∽△BDP,△BPD∽△BQA,△ACM∽△ABQ,△DCN∽△ABQ,△ACM∽△DBP,所以圖中共有六對相似三角形.故選C.7、A【解析】試題分析:根據(jù)軸對稱圖形的意義:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸;據(jù)此可知,A為軸對稱圖形.故選A.考點:軸對稱圖形8、B【解析】

抓住黑白面積相等,根據(jù)概率公式可求出概率.【詳解】因為,黑白區(qū)域面積相等,所以,點落在黑色區(qū)域的概率是.故選B【點睛】本題考核知識點:幾何概率.解題關(guān)鍵點:分清黑白區(qū)域面積關(guān)系.9、C【解析】

根據(jù)等腰三角形的性質(zhì)得到∠CDA=∠A=50°,根據(jù)三角形內(nèi)角和定理可得∠DCA=80°,根據(jù)題目中作圖步驟可知,MN垂直平分線段BC,根據(jù)線段垂直平分線定理可知BD=CD,根據(jù)等邊對等角得到∠B=∠BCD,根據(jù)三角形外角性質(zhì)可知∠B+∠BCD=∠CDA,進而求得∠BCD=25°,根據(jù)圖形可知∠ACB=∠ACD+∠BCD,即可解決問題.【詳解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根據(jù)作圖步驟可知,MN垂直平分線段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故選C【點睛】本題考查了等腰三角形的性質(zhì)、三角形內(nèi)角和定理、線段垂直平分線定理以及三角形外角性質(zhì),熟練掌握各個性質(zhì)定理是解題關(guān)鍵.10、C【解析】

根據(jù)平方根,數(shù)軸,有理數(shù)的分類逐一分析即可.【詳解】①∵-102=10,∴②數(shù)軸上的點與實數(shù)成一一對應(yīng)關(guān)系,故說法正確;③∵16=4,故-2是16的平方根,故說法正確;④任何實數(shù)不是有理數(shù)就是無理數(shù),故說法正確;⑤兩個無理數(shù)的和還是無理數(shù),如2和-2⑥無理數(shù)都是無限小數(shù),故說法正確;故正確的是②③④⑥共4個;故選C.【點睛】本題考查了有理數(shù)的分類,數(shù)軸及平方根的概念,有理數(shù)都可以化為小數(shù),其中整數(shù)可以看作小數(shù)點后面是零的小數(shù),分數(shù)可以化為有限小數(shù)或無限循環(huán)小數(shù);無理數(shù)是無限不循環(huán)小數(shù),其中有開方開不盡的數(shù),如2,二、填空題(共7小題,每小題3分,滿分21分)11、(15-55).【解析】試題解析:∵C為線段AB的黃金分割點(AC>BC),∴AC=5-12AB=AC=5-1∴BC=AB-AC=10-(55-5)=(15-55)cm.考點:黃金分割.12、【解析】分析:根據(jù)二次根式的性質(zhì)先化簡,再合并同類二次根式即可.詳解:原式=3-5=﹣2.點睛:此題主要考查了二次根式的加減,靈活利用二次根式的化簡是解題關(guān)鍵,比較簡單.13、①②④【解析】

①根據(jù)ASA可證△BOE≌△COF,根據(jù)全等三角形的性質(zhì)得到BE=CF,根據(jù)等弦對等弧得到,可以判斷①;

②根據(jù)SAS可證△BOG≌△COH,根據(jù)全等三角形的性質(zhì)得到∠GOH=90°,OG=OH,根據(jù)等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;

③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;

④根據(jù)△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設(shè)BG=x,則BH=4-x,根據(jù)勾股定理得到GH==,可以求得其最小值,可以判斷④.【詳解】解:①如圖所示,

∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,

∴∠BOE=∠COF,

在△BOE與△COF中,,

∴△BOE≌△COF,

∴BE=CF,

∴,①正確;

②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,

∴△BOG≌△COH;

∴OG=OH,∵∠GOH=90°,

∴△OGH是等腰直角三角形,②正確.③如圖所示,

∵△HOM≌△GON,

∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯誤;

④∵△BOG≌△COH,

∴BG=CH,

∴BG+BH=BC=4,

設(shè)BG=x,則BH=4-x,

則GH==,

∴其最小值為4+2,④正確.

故答案為:①②④【點睛】考查了圓的綜合題,關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),等弦對等弧,等腰直角三角形的判定,勾股定理,面積的計算,綜合性較強.14、1.【解析】試題分析:∵關(guān)于x的方程x2∴Δ=(1-m)∴m的最大整數(shù)值為1.考點:1.一元二次方程根的判別式;2.解一元一次不等式.15、圓形【解析】

根據(jù)竹籬笆的長度可知所圍成的正方形的邊長,進而可計算出所圍成的正方形的面積;根據(jù)圓的周長公式,可知所圍成的圓的半徑,進而將圓的面積計算出來,兩者進行比較.【詳解】圍成的圓形場地的面積較大.理由如下:設(shè)正方形的邊長為a,圓的半徑為R,∵竹籬笆的長度為48米,∴4a=48,則a=1.即所圍成的正方形的邊長為1;2π×R=48,∴R=,即所圍成的圓的半徑為,∴正方形的面積S1=a2=144,圓的面積S2=π×()2=,∵144<,∴圍成的圓形場地的面積較大.故答案為:圓形.【點睛】此題主要考查實數(shù)的大小的比較在實際生活中的應(yīng)用,所以學生在學這一部分時一定要聯(lián)系實際,不能死學.16、8?a<13;【解析】

首先確定不等式組的解集,先利用含a的式子表示,根據(jù)整數(shù)解的個數(shù)就可以確定有哪些整數(shù)解,根據(jù)解的情況可以得到關(guān)于a的不等式,從而求出a的范圍.【詳解】解不等式3x?5>1,得:x>2,解不等式5x?a?12,得:x?,∵不等式組有2個整數(shù)解,∴其整數(shù)解為3和4,則4?<5,解得:8?a<13,故答案為:8?a<13【點睛】此題考查一元一次不等式組的整數(shù)解,掌握運算法則是解題關(guān)鍵17、【解析】

先利用等腰直角三角形的性質(zhì)求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出結(jié)論.【詳解】如圖,過點A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵兩個同樣大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根據(jù)勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案為-1.【點睛】此題主要考查了勾股定理,等腰直角三角形的性質(zhì),正確作出輔助線是解本題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)1;(2)點D(8﹣23,0);(3)點D的坐標為(35﹣1,0)或(﹣35﹣1,0).【解析】分析:(Ⅰ)由點B的坐標知OA=8、AB=1、OB=10,根據(jù)折疊性質(zhì)可得BA=BA′=1,據(jù)此可得答案;(Ⅱ)連接AA′,利用折疊的性質(zhì)和中垂線的性質(zhì)證△BAA′是等邊三角形,可得∠A′BD=∠ABD=30°,據(jù)此知AD=ABtan∠ABD=23,繼而可得答案;(Ⅲ)分點D在OA上和點D在AO延長線上這兩種情況,利用相似三角形的判定和性質(zhì)分別求解可得.詳解:(Ⅰ)如圖1,由題意知OA=8、AB=1,∴OB=10,由折疊知,BA=BA′=1,∴OA′=1.故答案為1;(Ⅱ)如圖2,連接AA′.∵點A′落在線段AB的中垂線上,∴BA=AA′.∵△BDA′是由△BDA折疊得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等邊三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=23,∴OD=OA﹣AD=8﹣23,∴點D(8﹣23,0);(Ⅲ)①如圖3,當點D在OA上時.由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴BM=AN=12OA=4,∴A′M=A'B2-B∴A′N=MN﹣A′M=AB﹣A′M=1﹣25,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,則A'MDN=BMA'解得:DN=35﹣5,則OD=ON+DN=4+35﹣5=35﹣1,∴D(35﹣1,0);②如圖4,當點D在AO延長線上時,過點A′作x軸的平行線交y軸于點M,延長AB交所作直線于點N,則BN=CM,MN=BC=OA=8,由旋轉(zhuǎn)知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴A′M=A′N=12MN則MC=BN=A'B2-A'N2=25,∴MO由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,則MEA'N=MA'NB解得:ME=855,則OE=MO﹣ME=1+∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴DOA'M=OEME,即解得:DO=33+1,則點D的坐標為(﹣35﹣1,0).綜上,點D的坐標為(35﹣1,0)或(﹣35﹣1,0).點睛:本題主要考查四邊形的綜合問題,解題的關(guān)鍵是熟練掌握折疊變換的性質(zhì)、矩形的性質(zhì)、相似三角形的判定與性質(zhì)及勾股定理等知識點.19、(1)A(﹣3,0),y=﹣x+;(2)①D(t﹣3+,t﹣3),②CD最小值為;(3)P(2,﹣),理由見解析.【解析】

(1)當y=0時,﹣=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系數(shù)法可求直線l的表達式;(2)分當點M在AO上運動時,當點M在OB上運動時,進行討論可求D點坐標,將D點坐標代入直線解析式求得t的值;線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,根據(jù)勾股定理可求點M運動的過程中線段CD長度的最小值;(3)分當點M在AO上運動時,即0<t<3時,當點M在OB上運動時,即3≤t≤4時,進行討論可求P點坐標.【詳解】(1)當y=0時,﹣=0,解得x1=1,x2=﹣3,∵點A在點B的左側(cè),∴A(﹣3,0),B(1,0),由解析式得C(0,),設(shè)直線l的表達式為y=kx+b,將B,C兩點坐標代入得b=mk﹣,故直線l的表達式為y=﹣x+;(2)當點M在AO上運動時,如圖:由題意可知AM=t,OM=3﹣t,MC⊥MD,過點D作x軸的垂線垂足為N,∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN,在△MCO與△DMN中,,∴△MCO≌△DMN,∴MN=OC=,DN=OM=3﹣t,∴D(t﹣3+,t﹣3);同理,當點M在OB上運動時,如圖,OM=t﹣3,△MCO≌△DMN,MN=OC=,ON=t﹣3+,DN=OM=t﹣3,∴D(t﹣3+,t﹣3).綜上得,D(t﹣3+,t﹣3).將D點坐標代入直線解析式得t=6﹣2,線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,∵M在AB上運動,∴當CM⊥AB時,CM最短,CD最短,即CM=CO=,根據(jù)勾股定理得CD最小;(3)當點M在AO上運動時,如圖,即0<t<3時,∵tan∠CBO==,∴∠CBO=60°,∵△BDP是等邊三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=3﹣t,AN=t+,NB=4﹣t﹣,tan∠NBO=,=,解得t=3﹣,經(jīng)檢驗t=3﹣是此方程的解,過點P作x軸的垂線交于點Q,易知△PQB≌△DNB,∴BQ=BN=4﹣t﹣=1,PQ=,OQ=2,P(2,﹣);同理,當點M在OB上運動時,即3≤t≤4時,∵△BDP是等邊三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=t﹣3,NB=t﹣3+﹣1=t﹣4+,tan∠NBD=,=,解得t=3﹣,經(jīng)檢驗t=3﹣是此方程的解,t=3﹣(不符合題意,舍).故P(2,﹣).【點睛】考查了二次函數(shù)綜合題,涉及的知識點有:待定系數(shù)法,勾股定理,等腰直角三角形的性質(zhì),等邊三角形的性質(zhì),三角函數(shù),分類思想的運用,方程思想的運用,綜合性較強,有一定的難度.20、A車行駛的時間為3.1小時,B車行駛的時間為2.1小時.【解析】

設(shè)B車行駛的時間為t小時,則A車行駛的時間為1.4t小時,根據(jù)題意得:﹣=80,解分式方程即可,注意驗根.【詳解】解:設(shè)B車行駛的時間為t小時,則A車行駛的時間為1.4t小時,根據(jù)題意得:﹣=80,解得:t=2.1,經(jīng)檢驗,t=2.1是原分式方程的解,且符合題意,∴1.4t=3.1.答:A車行駛的時間為3.1小時,B車行駛的時間為2.1小時.【點睛】本題考核知識點:列分式方程解應(yīng)用題.解題關(guān)鍵點:根據(jù)題意找出數(shù)量關(guān)系,列出方程.21、(1)300人(2)b=0.15,c=0.2;(3)【解析】分析:(1)利用合格的人數(shù)除以該組頻率進而得出該校初四學生總數(shù);

(2)利用(1)中所求,結(jié)合頻數(shù)÷總數(shù)=頻率,進而求出答案;

(3)根據(jù)題意畫出樹狀圖,然后求得全部情況的總數(shù)與符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.詳解:(1)由題意可得:該校初三學生共有:105÷0.35=300(人),答:該校初三學生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如圖所示:(3)畫樹形圖得:∵一共有12種情況,抽取到甲和乙的有2種,∴P(抽到甲和乙)==.點睛:此題主要考查了樹狀圖法求概率以及條形統(tǒng)計圖的應(yīng)用,根據(jù)題意利用樹狀圖得出所有情況是解題關(guān)鍵.22、(1)正方形ABCD的“關(guān)聯(lián)點”為P2,P3;(2)或;(3).【解析】

(1)正方形ABCD的“關(guān)聯(lián)點”中正方形的內(nèi)切圓和外切圓之間(包括兩個圓上的點),由此畫出圖形即可判斷;(2)因為E是正方形ABCD的“關(guān)聯(lián)點”,所以E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個圓上的點),因為E在直線上,推出點E在線段FG上,求出點F、G的橫坐標,再根據(jù)對稱性即可解決問題;(3)因為線段MN上的每一個點都是正方形ABCD的“關(guān)聯(lián)點”,分兩種情形:①如圖3中,MN與小⊙Q相切于點F,求出此時點Q的橫坐標;②M如圖4中,落在大⊙Q上,求出點Q的橫坐標即可解決問題;【詳解】(1)由題意正方形ABCD的“關(guān)聯(lián)點”中正方形的內(nèi)切圓和外切圓之間(包括兩個圓上的點),觀察圖象可知:正方形ABCD的“關(guān)聯(lián)點”為P2,P3;(2)作正方形ABCD的內(nèi)切圓和外接圓,∴OF=1,,.∵E是正方形ABCD的“關(guān)聯(lián)點”,∴E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個圓上的點),∵點E在直線上,∴點E在線段FG上.分別作FF’⊥x軸,GG’⊥x軸,∵OF=1,,∴,.∴.根據(jù)對稱性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵線段MN上的每一個點都是正方形ABCD的“關(guān)聯(lián)點”,①MN與小⊙Q相切于點F,如圖3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如圖4中,∵,,∴.∴.綜上:.【點睛】本題考查一次函數(shù)綜合題、正方形的性質(zhì)、直線與圓的位置關(guān)系等知識,解題的關(guān)鍵是理解題意,學會尋找特殊位置解決數(shù)學問題,屬于中考壓軸題.23、(1)y=2x+2(2)這位乘客乘車的里程是15km【解析】

(1)根據(jù)函數(shù)圖象可以得出出租車的起步價是8元,設(shè)當x>3時,y與x的函數(shù)關(guān)系式為y=kx+b(k≠0),運用待定系數(shù)法就可以求出結(jié)論;

(2)將y=32代入(1)的解析式就可以求出x的值.【詳解】(1)由圖象得:出租車的起步價是8元;設(shè)當x>3時,y與x的函數(shù)關(guān)系式為y=kx+b(k≠0),由函數(shù)圖象,得,解得:故y與x的函數(shù)關(guān)系式為:y=2x+2;(2)∵32元>8元,∴當y=32時,32=2x+2,x=15答:這位乘客乘車的里程是15km.24、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見解析.【解析】

(1)由點A、B坐標利用待定系數(shù)法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長線于點G,證△GAB∽△OAC得=,據(jù)此知BG=2AG.在Rt△ABG中根據(jù)BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據(jù)正切函數(shù)定義可得答案;(2)作BH⊥CD于點H,交CP于點K,連接AK,易得四邊形OBHC是正方形,應(yīng)用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB-KB=1-h,A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論