2025年安徽省阜陽九中學初三下學期開年摸底大聯(lián)考(全國I卷)數(shù)學試題含解析_第1頁
2025年安徽省阜陽九中學初三下學期開年摸底大聯(lián)考(全國I卷)數(shù)學試題含解析_第2頁
2025年安徽省阜陽九中學初三下學期開年摸底大聯(lián)考(全國I卷)數(shù)學試題含解析_第3頁
2025年安徽省阜陽九中學初三下學期開年摸底大聯(lián)考(全國I卷)數(shù)學試題含解析_第4頁
2025年安徽省阜陽九中學初三下學期開年摸底大聯(lián)考(全國I卷)數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025年安徽省阜陽九中學初三下學期開年摸底大聯(lián)考(全國I卷)數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.下列幾何體中,其三視圖都是全等圖形的是()A.圓柱 B.圓錐 C.三棱錐 D.球2.如圖,已知⊙O的半徑為5,AB是⊙O的弦,AB=8,Q為AB中點,P是圓上的一點(不與A、B重合),連接PQ,則PQ的最小值為()A.1 B.2 C.3 D.83.(2016四川省甘孜州)如圖,在5×5的正方形網(wǎng)格中,每個小正方形的邊長都為1,若將△AOB繞點O順時針旋轉(zhuǎn)90°得到△A′OB′,則A點運動的路徑的長為()A.π B.2π C.4π D.8π4.若直線y=kx+b圖象如圖所示,則直線y=?bx+k的圖象大致是()A. B. C. D.5.共享單車已經(jīng)成為城市公共交通的重要組成部分,某共享單車公司經(jīng)過調(diào)查獲得關于共享單車租用行駛時間的數(shù)據(jù),并由此制定了新的收費標準:每次租用單車行駛a小時及以內(nèi),免費騎行;超過a小時后,每半小時收費1元,這樣可保證不少于50%的騎行是免費的.制定這一標準中的a的值時,參考的統(tǒng)計量是此次調(diào)查所得數(shù)據(jù)的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差6.在平面直角坐標系xOy中,對于任意三點A,B,C的“矩面積”,給出如下定義:“水平底”a:任意兩點橫坐標差的最大值,“鉛垂高”h:任意兩點縱坐標差的最大值,則“矩面積”S=ah.例如:三點坐標分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三點的“矩面積”為18,則t的值為()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或67.如圖是一個由4個相同的長方體組成的立體圖形,它的主視圖是()A.B.C.D.8.如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點P是△ABC邊上一動點,沿B→A→C的路徑移動,過點P作PD⊥BC于點D,設BD=x,△BDP的面積為y,則下列能大致反映y與x函數(shù)關系的圖象是()A.B.C.D.9.如圖,把一個直角三角尺的直角頂點放在直尺的一邊上,若∠1=50°,則∠2=()A.20° B.30° C.40° D.50°10.如圖是二次函數(shù)的部分圖象,由圖象可知不等式的解集是()A. B. C.且 D.x<-1或x>5二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,⊙O的半徑OD⊥弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.若AB=8,CD=2,則EC的長為_______.12.把多項式a3-2a2+a分解因式的結(jié)果是13.若一元二次方程x2﹣2x﹣m=0無實數(shù)根,則一次函數(shù)y=(m+1)x+m﹣1的圖象不經(jīng)過第_____象限.14.如圖,點A是雙曲線y=﹣在第二象限分支上的一個動點,連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,點C在第一象限,隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=上運動,則k的值為_____.15.計算:的結(jié)果為_____.16.已知點A(x1,y1)、B(x2,y2)在直線y=kx+b上,且直線經(jīng)過第一、二、四象限,當x1<x2時,y1與y2的大小關系為________.三、解答題(共8題,共72分)17.(8分)已知平行四邊形ABCD中,CE平分∠BCD且交AD于點E,AF∥CE,且交BC于點F.求證:△ABF≌△CDE;如圖,若∠1=65°,求∠B的大小.18.(8分)如圖,在矩形ABCD中,對角線AC的垂直平分線EF分別交AD、AC、BC于點E、O、F,連接CE和AF.(1)求證:四邊形AECF為菱形;(2)若AB=4,BC=8,求菱形AECF的周長.19.(8分)我校春晚遴選男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去參加主持人精選。(1)選中的男主持人為甲班的頻率是(2)選中的男女主持人均為甲班的概率是多少?(用樹狀圖或列表)20.(8分)已知如圖,在△ABC中,∠B=45°,點D是BC邊的中點,DE⊥BC于點D,交AB于點E,連接CE.(1)求∠AEC的度數(shù);(2)請你判斷AE、BE、AC三條線段之間的等量關系,并證明你的結(jié)論.21.(8分)如圖(1),P為△ABC所在平面上一點,且∠APB=∠BPC=∠CPA=120°,則點P叫做△ABC的費馬點.(1)如果點P為銳角△ABC的費馬點,且∠ABC=60°.①求證:△ABP∽△BCP;②若PA=3,PC=4,則PB=.(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD相交于P點.如圖(2)①求∠CPD的度數(shù);②求證:P點為△ABC的費馬點.22.(10分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D,過點D作⊙O的切線DE交AC于點E,交AB延長線于點F.(1)求證:BD=CD;(2)求證:DC2=CE?AC;(3)當AC=5,BC=6時,求DF的長.23.(12分)計算:.先化簡,再求值:,其中.24.在?ABCD中,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.(1)求證:四邊形DEBF是矩形;(2)若AF平分∠DAB,AE=3,BF=4,求?ABCD的面積.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】分析:任意方向上的視圖都是全等圖形的幾何體只有球,在任意方向上的視圖都是圓,其他的幾何體的視圖都有不同的.詳解:圓柱,圓錐,三棱錐,球中,三視圖都是全等圖形的幾何體只有球,在任意方向上的視圖都是圓,故選D.點睛:本題考查簡單幾何體的三視圖,本題解題的關鍵是看出各個圖形的在任意方向上的視圖.2、B【解析】

連接OP、OA,根據(jù)垂徑定理求出AQ,根據(jù)勾股定理求出OQ,計算即可.【詳解】解:由題意得,當點P為劣弧AB的中點時,PQ最小,

連接OP、OA,由垂徑定理得,點Q在OP上,AQ=AB=4,在Rt△AOB中,OQ==3,∴PQ=OP-OQ=2,故選:B.本題考查的是垂徑定理、勾股定理,掌握垂徑定理的推論是解題的關鍵.3、B【解析】試題分析:∵每個小正方形的邊長都為1,∴OA=4,∵將△AOB繞點O順時針旋轉(zhuǎn)90°得到△A′OB′,∴∠AOA′=90°,∴A點運動的路徑的長為:=2π.故選B.考點:弧長的計算;旋轉(zhuǎn)的性質(zhì).4、A【解析】

根據(jù)一次函數(shù)y=kx+b的圖象可知k>1,b<1,再根據(jù)k,b的取值范圍確定一次函數(shù)y=?bx+k圖象在坐標平面內(nèi)的位置關系,即可判斷.【詳解】解:∵一次函數(shù)y=kx+b的圖象可知k>1,b<1,

∴-b>1,∴一次函數(shù)y=?bx+k的圖象過一、二、三象限,與y軸的正半軸相交,故選:A.本題考查了一次函數(shù)的圖象與系數(shù)的關系.函數(shù)值y隨x的增大而減小?k<1;函數(shù)值y隨x的增大而增大?k>1;一次函數(shù)y=kx+b圖象與y軸的正半軸相交?b>1,一次函數(shù)y=kx+b圖象與y軸的負半軸相交?b<1,一次函數(shù)y=kx+b圖象過原點?b=1.5、B【解析】

根據(jù)需要保證不少于50%的騎行是免費的,可得此次調(diào)查的參考統(tǒng)計量是此次調(diào)查所得數(shù)據(jù)的中位數(shù).【詳解】因為需要保證不少于50%的騎行是免費的,所以制定這一標準中的a的值時,參考的統(tǒng)計量是此次調(diào)查所得數(shù)據(jù)的中位數(shù),故選B.本題考查了中位數(shù)的知識,中位數(shù)是以它在所有標志值中所處的位置確定的全體單位標志值的代表值,不受分布數(shù)列的極大或極小值影響,從而在一定程度上提高了中位數(shù)對分布數(shù)列的代表性。6、C【解析】

由題可知“水平底”a的長度為3,則由“矩面積”為18可知“鉛垂高”h=6,再分>2或t<1兩種情況進行求解即可.【詳解】解:由題可知a=3,則h=18÷3=6,則可知t>2或t<1.當t>2時,t-1=6,解得t=7;當t<1時,2-t=6,解得t=-4.綜上,t=-4或7.故選擇C.本題考查了平面直角坐標系的內(nèi)容,理解題意是解題關鍵.7、A【解析】由三視圖的定義可知,A是該幾何體的三視圖,B、C、D不是該幾何體的三視圖.故選A.點睛:從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,看不到的線畫虛線.本題從左面看有兩列,左側(cè)一列有兩層,右側(cè)一列有一層.8、B【解析】解:過A點作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=12BC=2,當0≤x≤2時,如圖1,∵∠B=45°,∴PD=BD=x,∴y=12?x?x=當2<x≤4時,如圖2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12?(4﹣x)?x=-9、C【解析】

由兩直線平行,同位角相等,可求得∠3的度數(shù),然后求得∠2的度數(shù).【詳解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°?50°=40°.故選C.本題主要考查平行線的性質(zhì),熟悉掌握性質(zhì)是關鍵.10、D【解析】利用二次函數(shù)的對稱性,可得出圖象與x軸的另一個交點坐標,結(jié)合圖象可得出的解集:由圖象得:對稱軸是x=2,其中一個點的坐標為(1,0),∴圖象與x軸的另一個交點坐標為(-1,0).由圖象可知:的解集即是y<0的解集,∴x<-1或x>1.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

設⊙O半徑為r,根據(jù)勾股定理列方程求出半徑r,由勾股定理依次求BE和EC的長.【詳解】連接BE,設⊙O半徑為r,則OA=OD=r,OC=r-2,

∵OD⊥AB,

∴∠ACO=90°,

AC=BC=AB=4,

在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,

r=5,

∴AE=2r=10,

∵AE為⊙O的直徑,

∴∠ABE=90°,

由勾股定理得:BE=6,

在Rt△ECB中,EC=.故答案是:.考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關鍵.12、.【解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.因此,.13、一【解析】∵一元二次方程x2-2x-m=0無實數(shù)根,

∴△=4+4m<0,解得m<-1,

∴m+1<0,m-1<0,

∴一次函數(shù)y=(m+1)x+m-1的圖象經(jīng)過二三四象限,不經(jīng)過第一象限.

故答案是:一.14、1【解析】

根據(jù)題意得出△AOD∽△OCE,進而得出,即可得出k=EC×EO=1.【詳解】解:連接CO,過點A作AD⊥x軸于點D,過點C作CE⊥x軸于點E,∵連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=10°,則∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,∴==1,∵點A是雙曲線y=-在第二象限分支上的一個動點,∴S△AOD=×|xy|=,∴S△EOC=,即×OE×CE=,∴k=OE×CE=1,故答案為1.本題主要考查了反比例函數(shù)與一次函數(shù)的交點以及相似三角形的判定與性質(zhì),正確添加輔助線,得出△AOD∽△OCE是解題關鍵.15、【解析】分析:根據(jù)二次根式的性質(zhì)先化簡,再合并同類二次根式即可.詳解:原式=3-5=﹣2.點睛:此題主要考查了二次根式的加減,靈活利用二次根式的化簡是解題關鍵,比較簡單.16、y1>y1【解析】分析:直接利用一次函數(shù)的性質(zhì)分析得出答案.詳解:∵直線經(jīng)過第一、二、四象限,∴y隨x的增大而減小,∵x1<x1,∴y1與y1的大小關系為:y1>y1.故答案為:>.點睛:此題主要考查了一次函數(shù)圖象上點的坐標特征,正確掌握一次函數(shù)增減性是解題關鍵.三、解答題(共8題,共72分)17、(1)證明見解析;(2)50°.【解析】試題分析:(1)由平行四邊形的性質(zhì)得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,證出∠AFB=∠1,由AAS證明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四邊形的性質(zhì)和三角形內(nèi)角和定理即可得出結(jié)果.試題解析:(1)∵四邊形ABCD是平行四邊形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.考點:(1)平行四邊形的性質(zhì);(2)全等三角形的判定與性質(zhì).18、(1)見解析;(2)1【解析】

(1)根據(jù)ASA推出:△AEO≌△CFO;根據(jù)全等得出OE=OF,推出四邊形是平行四邊形,再根據(jù)EF⊥AC即可推出四邊形是菱形;(2)根據(jù)線段垂直平分線性質(zhì)得出AF=CF,設AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到結(jié)論.【詳解】(1)∵EF是AC的垂直平分線,∴AO=OC,∠AOE=∠COF=90°.∵四邊形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.又∵OA=OC,∴四邊形AECF是平行四邊形.又∵EF⊥AC,∴平行四邊形AECF是菱形;(2)設AF=x.∵EF是AC的垂直平分線,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周長為1.本題考查了勾股定理,矩形性質(zhì),平行四邊形的判定,菱形的判定,全等三角形的性質(zhì)和判定,平行線的性質(zhì)等知識點的綜合運用,用了方程思想.19、(1)(2),圖形見解析.【解析】

(1)根據(jù)概率的定義即可求出;(2)先根據(jù)題意列出樹狀圖,再利用概率公式進行求解.【詳解】(1)由題意P(選中的男主持人為甲班)=(2)列出樹狀圖如下∴P(選中的男女主持人均為甲班的)=此題主要考查概率的計算,解題的關鍵是根據(jù)題意列出樹狀圖進行求解.20、(1)90°;(1)AE1+EB1=AC1,證明見解析.【解析】

(1)根據(jù)題意得到DE是線段BC的垂直平分線,根據(jù)線段垂直平分線的性質(zhì)得到EB=EC,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算即可;(1)根據(jù)勾股定理解答.【詳解】解:(1)∵點D是BC邊的中點,DE⊥BC,∴DE是線段BC的垂直平分線,∴EB=EC,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°;(1)AE1+EB1=AC1.∵∠AEC=90°,∴AE1+EC1=AC1,∵EB=EC,∴AE1+EB1=AC1.本題考查的是線段垂直平分線的性質(zhì)定理,掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關鍵.21、(1)①證明見解析;②23【解析】試題分析:(1)①根據(jù)題意,利用內(nèi)角和定理及等式性質(zhì)得到一對角相等,利用兩角相等的三角形相似即可得證;②由三角形ABP與三角形BCP相似,得比例,將PA與PC的長代入求出PB的長即可;(2)①根據(jù)三角形ABE與三角形ACD為等邊三角形,利用等邊三角形的性質(zhì)得到兩對邊相等,兩個角為60°,利用等式的性質(zhì)得到夾角相等,利用SAS得到三角形ACE與三角形ABD全等,利用全等三角形的對應角相等得到∠1=∠2,再由對頂角相等,得到∠5=∠6,即可求出所求角度數(shù);②由三角形ADF與三角形CPF相似,得到比例式,變形得到積的恒等式,再由對頂角相等,利用兩邊成比例,且夾角相等的三角形相似得到三角形AFP與三角形CFD相似,利用相似三角形對應角相等得到∠APF為60°,由∠APD+∠DPC,求出∠APC為120°,進而確定出∠APB與∠BPC都為120°,即可得證.試題解析:(1)證明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,∴∠PAB=∠PBC,又∵∠APB=∠BPC=120°,∴△ABP∽△BCP,②解:∵△ABP∽△BCP,∴PAPB∴PB2=PA?PC=12,∴PB=23;(2)解:①∵△ABE與△ACD都為等邊三角形,∴∠BAE=∠CAD=60°,AE=AB,AC=AD,∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,在△ACE和△ABD中,AC=AD∠EAC=∠BAD∴△ACE≌△ABD(SAS),∴∠1=∠2,∵∠3=∠4,∴∠CPD=∠6=∠5=60°;②證明:∵△ADF∽△CFP,∴AF?PF=DF?CF,∵∠AFP=∠CFD,∴△AFP∽△CDF.∴∠APF=∠ACD=60°,∴∠APC=∠CPD+∠APF=120°,∴∠BPC=120°,∴∠APB=360°﹣∠BPC﹣∠APC=120°,∴P點為△ABC的費馬點.考點:相似形綜合題22、(1)詳見解析;(2)詳見解析;(3)DF=.【解析】

(1)先判斷出AD⊥BC,即可得出結(jié)論;(2)先判斷出OD∥AC,進而判斷出∠CED=∠ODE,判斷出△CDE∽△CAD,即可得出結(jié)論;(3)先求出OD,再求出CD=3,進而求出CE,AE,DE,再判斷出,即可得出結(jié)論.【詳解】(1)連接AD,∵AB是⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)連接OD,∵DE是⊙O的切線,∴∠ODE=90°,由(1)知,BD=CD,∵OA=OB,∴OD∥AC,∴∠CED=∠ODE=90°=∠ADC,∵∠C=∠C,∴△CDE∽△CAD,∴,∴CD2=CE?AC;(3)∵AB=AC=5,由(1)知,∠A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論