版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025年安徽省宿州地區(qū)重點(diǎn)中學(xué)教研聯(lián)合體中考模擬試卷(一)數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.若代數(shù)式有意義,則實(shí)數(shù)x的取值范圍是()A.x>0 B.x≥0 C.x≠0 D.任意實(shí)數(shù)2.如圖,AB是定長線段,圓心O是AB的中點(diǎn),AE、BF為切線,E、F為切點(diǎn),滿足AE=BF,在上取動(dòng)點(diǎn)G,國點(diǎn)G作切線交AE、BF的延長線于點(diǎn)D、C,當(dāng)點(diǎn)G運(yùn)動(dòng)時(shí),設(shè)AD=y,BC=x,則y與x所滿足的函數(shù)關(guān)系式為()A.正比例函數(shù)y=kx(k為常數(shù),k≠0,x>0)B.一次函數(shù)y=kx+b(k,b為常數(shù),kb≠0,x>0)C.反比例函數(shù)y=(k為常數(shù),k≠0,x>0)D.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,x>0)3.下列各圖中,既可經(jīng)過平移,又可經(jīng)過旋轉(zhuǎn),由圖形①得到圖形②的是()A. B. C. D.4.一、單選題如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1255.下列運(yùn)算正確的是()A.=x5 B. C.·= D.3+26.如圖,點(diǎn)從矩形的頂點(diǎn)出發(fā),沿以的速度勻速運(yùn)動(dòng)到點(diǎn),圖是點(diǎn)運(yùn)動(dòng)時(shí),的面積隨運(yùn)動(dòng)時(shí)間變化而變化的函數(shù)關(guān)系圖象,則矩形的面積為()A. B. C. D.7.的值等于()A. B. C. D.8.下列四個(gè)幾何體中,左視圖為圓的是()A. B. C. D.9.關(guān)于x的一元一次不等式≤﹣2的解集為x≥4,則m的值為()A.14 B.7 C.﹣2 D.210.能說明命題“對(duì)于任何實(shí)數(shù)a,|a|>﹣a”是假命題的一個(gè)反例可以是()A.a(chǎn)=﹣2 B.a(chǎn)= C.a(chǎn)=1 D.a(chǎn)=二、填空題(共7小題,每小題3分,滿分21分)11.已知一個(gè)等腰三角形的兩邊長分別為2和4,則該等腰三角形的周長是.12.在Rt△ABC中,∠A是直角,AB=2,AC=3,則BC的長為_____.13.計(jì)算:___.14.不解方程,判斷方程2x2+3x﹣2=0的根的情況是_____.15.中,,,高,則的周長為______。16.若正多邊形的一個(gè)內(nèi)角等于120°,則這個(gè)正多邊形的邊數(shù)是_____.17.在日本核電站事故期間,我國某監(jiān)測點(diǎn)監(jiān)測到極微量的人工放射性核素碘﹣131,其濃度為0.0000872貝克/立方米.?dāng)?shù)據(jù)“0.0000872”用科學(xué)記數(shù)法可表示為________.三、解答題(共7小題,滿分69分)18.(10分)如圖,有長為14m的籬笆,現(xiàn)一面利用墻(墻的最大可用長度a為10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬AB為xm,面積為Sm1.求S與x的函數(shù)關(guān)系式及x值的取值范圍;要圍成面積為45m1的花圃,AB的長是多少米?當(dāng)AB的長是多少米時(shí),圍成的花圃的面積最大?19.(5分)問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點(diǎn)D,則D為BC的中點(diǎn),∠BAD=∠BAC=60°,于是==遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點(diǎn)在同一條直線上,連接BD.(1)求證:△ADB≌△AEC;(2)若AD=2,BD=3,請(qǐng)計(jì)算線段CD的長;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對(duì)稱點(diǎn)E,連接AE并延長交BM于點(diǎn)F,連接CE,CF.(3)證明:△CEF是等邊三角形;(4)若AE=4,CE=1,求BF的長.20.(8分)如圖,在平面直角坐標(biāo)系中,直線y1=2x﹣2與雙曲線y2=交于A、C兩點(diǎn),AB⊥OA交x軸于點(diǎn)B,且OA=AB.求雙曲線的解析式;求點(diǎn)C的坐標(biāo),并直接寫出y1<y2時(shí)x的取值范圍.21.(10分)某班為確定參加學(xué)校投籃比賽的任選,在A、B兩位投籃高手間進(jìn)行了6次投籃比賽,每人每次投10個(gè)球,將他們每次投中的個(gè)數(shù)繪制成如圖所示的折線統(tǒng)計(jì)圖.(1)根據(jù)圖中所給信息填寫下表:投中個(gè)數(shù)統(tǒng)計(jì)平均數(shù)中位數(shù)眾數(shù)A8B77(2)如果這個(gè)班只能在A、B之間選派一名學(xué)生參賽,從投籃穩(wěn)定性考慮應(yīng)該選派誰?請(qǐng)你利用學(xué)過的統(tǒng)計(jì)量對(duì)問題進(jìn)行分析說明.22.(10分)如圖,兒童游樂場有一項(xiàng)射擊游戲.從O處發(fā)射小球,將球投入正方形籃筐DABC.正方形籃筐三個(gè)頂點(diǎn)為A(2,2),B(3,2),D(2,3).小球按照拋物線y=﹣x2+bx+c飛行.小球落地點(diǎn)P坐標(biāo)(n,0)(1)點(diǎn)C坐標(biāo)為;(2)求出小球飛行中最高點(diǎn)N的坐標(biāo)(用含有n的代數(shù)式表示);(3)驗(yàn)證:隨著n的變化,拋物線的頂點(diǎn)在函數(shù)y=x2的圖象上運(yùn)動(dòng);(4)若小球發(fā)射之后能夠直接入籃,球沒有接觸籃筐,請(qǐng)直接寫出n的取值范圍.23.(12分)如圖,把兩個(gè)邊長相等的等邊△ABC和△ACD拼成菱形ABCD,點(diǎn)E、F分別是CB、DC延長上的動(dòng)點(diǎn),且始終保持BE=CF,連結(jié)AE、AF、EF.求證:AEF是等邊三角形.24.(14分)(1)解方程:x2x-3+5(2)解不等式組并把解集表示在數(shù)軸上:3x-12
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】
根據(jù)分式和二次根式有意義的條件進(jìn)行解答.【詳解】解:依題意得:x2≥1且x≠1.解得x≠1.故選C.考查了分式有意義的條件和二次根式有意義的條件.解題時(shí),注意分母不等于零且被開方數(shù)是非負(fù)數(shù).2、C【解析】
延長AD,BC交于點(diǎn)Q,連接OE,OF,OD,OC,OQ,由AE與BF為圓的切線,利用切線的性質(zhì)得到AE與EO垂直,BF與OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE與直角BOF全等,利用全等三角形的對(duì)應(yīng)角相等得到∠A=∠B,利用等角對(duì)等邊可得出三角形QAB為等腰三角形,由O為底邊AB的中點(diǎn),利用三線合一得到QO垂直于AB,得到一對(duì)直角相等,再由∠FQO與∠OQB為公共角,利用兩對(duì)對(duì)應(yīng)角相等的兩三角形相似得到三角形FQO與三角形OQB相似,同理得到三角形EQO與三角形OAQ相似,由相似三角形的對(duì)應(yīng)角相等得到∠QOE=∠QOF=∠A=∠B,再由切線長定理得到OD與OC分別為∠EOG與∠FOG的平分線,得到∠DOC為∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC與三角形OBC相似,同理三角形DOC與三角形DAO相似,進(jìn)而確定出三角形OBC與三角形DAO相似,由相似得比例,將AD=x,BC=y代入,并將AO與OB換為AB的一半,可得出x與y的乘積為定值,即y與x成反比例函數(shù),即可得到正確的選項(xiàng).【詳解】延長AD,BC交于點(diǎn)Q,連接OE,OF,OD,OC,OQ,∵AE,BF為圓O的切線,∴OE⊥AE,OF⊥FB,∴∠AEO=∠BFO=90°,在Rt△AEO和Rt△BFO中,∵,∴Rt△AEO≌Rt△BFO(HL),∴∠A=∠B,∴△QAB為等腰三角形,又∵O為AB的中點(diǎn),即AO=BO,∴QO⊥AB,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO,∴△QOF∽△QBO,∴∠B=∠QOF,同理可以得到∠A=∠QOE,∴∠QOF=∠QOE,根據(jù)切線長定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴,∴AD?BC=AO?OB=AB2,即xy=AB2為定值,設(shè)k=AB2,得到y(tǒng)=,則y與x滿足的函數(shù)關(guān)系式為反比例函數(shù)y=(k為常數(shù),k≠0,x>0).故選C.本題屬于圓的綜合題,涉及的知識(shí)有:相似三角形的判定與性質(zhì),切線長定理,直角三角形全等的判定與性質(zhì),反比例函數(shù)的性質(zhì),以及等腰三角形的性質(zhì),做此題是注意靈活運(yùn)用所學(xué)知識(shí).3、D【解析】A,B,C只能通過旋轉(zhuǎn)得到,D既可經(jīng)過平移,又可經(jīng)過旋轉(zhuǎn)得到,故選D.4、B【解析】
根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進(jìn)而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故選:B.本題考查角平分線的定義(從一個(gè)角的頂點(diǎn)引出一條射線,把這個(gè)角分成兩個(gè)完全相同的角,這條射線叫做這個(gè)角的角平分線),直角三角形的判定(有一個(gè)角為90°的三角形是直角三角形)以及勾股定理的運(yùn)用,解題的關(guān)鍵是首先證明出△ECF為直角三角形.5、B【解析】
根據(jù)冪的運(yùn)算法則及整式的加減運(yùn)算即可判斷.【詳解】A.=x6,故錯(cuò)誤;B.,正確;C.·=,故錯(cuò)誤;D.3+2不能合并,故錯(cuò)誤,故選B.此題主要考查整式的加減及冪的運(yùn)算,解題的關(guān)鍵是熟知其運(yùn)算法則.6、C【解析】
由函數(shù)圖象可知AB=2×2=4,BC=(6-2)×2=8,根據(jù)矩形的面積公式可求出.【詳解】由函數(shù)圖象可知AB=2×2=4,BC=(6-2)×2=8,∴矩形的面積為4×8=32,故選:C.本題考查動(dòng)點(diǎn)運(yùn)動(dòng)問題、矩形面積等知識(shí),根據(jù)圖形理解△ABP面積變化情況是解題的關(guān)鍵,屬于中考常考題型.7、C【解析】試題解析:根據(jù)特殊角的三角函數(shù)值,可知:故選C.8、A【解析】
根據(jù)三視圖的法則可得出答案.【詳解】解:左視圖為從左往右看得到的視圖,A.球的左視圖是圓,B.圓柱的左視圖是長方形,C.圓錐的左視圖是等腰三角形,D.圓臺(tái)的左視圖是等腰梯形,故符合題意的選項(xiàng)是A.錯(cuò)因分析較容易題.失分原因是不會(huì)判斷常見幾何體的三視圖.9、D【解析】
解不等式得到x≥m+3,再列出關(guān)于m的不等式求解.【詳解】≤﹣1,m﹣1x≤﹣6,﹣1x≤﹣m﹣6,x≥m+3,∵關(guān)于x的一元一次不等式≤﹣1的解集為x≥4,∴m+3=4,解得m=1.故選D.考點(diǎn):不等式的解集10、A【解析】
將各選項(xiàng)中所給a的值代入命題“對(duì)于任意實(shí)數(shù)a,”中驗(yàn)證即可作出判斷.【詳解】(1)當(dāng)時(shí),,此時(shí),∴當(dāng)時(shí),能說明命題“對(duì)于任意實(shí)數(shù)a,”是假命題,故可以選A;(2)當(dāng)時(shí),,此時(shí),∴當(dāng)時(shí),不能說明命題“對(duì)于任意實(shí)數(shù)a,”是假命題,故不能B;(3)當(dāng)時(shí),,此時(shí),∴當(dāng)時(shí),不能說明命題“對(duì)于任意實(shí)數(shù)a,”是假命題,故不能C;(4)當(dāng)時(shí),,此時(shí),∴當(dāng)時(shí),不能說明命題“對(duì)于任意實(shí)數(shù)a,”是假命題,故不能D;故選A.熟知“通過舉反例說明一個(gè)命題是假命題的方法和求一個(gè)數(shù)的絕對(duì)值及相反數(shù)的方法”是解答本題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】試題分析:因?yàn)?+2<4,所以等腰三角形的腰的長度是4,底邊長2,周長:4+4+2=1,答:它的周長是1,故答案為1.考點(diǎn):等腰三角形的性質(zhì);三角形三邊關(guān)系.12、【解析】
根據(jù)勾股定理解答即可.【詳解】∵在Rt△ABC中,∠A是直角,AB=2,AC=3,∴BC===,故答案為:此題考查勾股定理,關(guān)鍵是根據(jù)勾股定理解答.13、【解析】
直接利用負(fù)指數(shù)冪的性質(zhì)以及零指數(shù)冪的性質(zhì)分別化簡得出答案.【詳解】原式.故答案為.本題考查了實(shí)數(shù)運(yùn)算,正確化簡各數(shù)是解題的關(guān)鍵.14、有兩個(gè)不相等的實(shí)數(shù)根.【解析】分析:先求一元二次方程的判別式,由△與0的大小關(guān)系來判斷方程根的情況.詳解:∵a=2,b=3,c=?2,∴∴一元二次方程有兩個(gè)不相等的實(shí)數(shù)根.故答案為有兩個(gè)不相等的實(shí)數(shù)根.點(diǎn)睛:考查一元二次方程根的判別式,當(dāng)時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.當(dāng)時(shí),方程有兩個(gè)相等的實(shí)數(shù)根.當(dāng)時(shí),方程沒有實(shí)數(shù)根.15、32或42【解析】
根據(jù)題意,分兩種情況討論:①若∠ACB是銳角,②若∠ACB是鈍角,分別畫出圖形,利用勾股定理,即可求解.【詳解】分兩種情況討論:①若∠ACB是銳角,如圖1,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9+5+15+13=42,②若∠ACB是鈍角,如圖2,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9-5+15+13=32,故答案是:32或42.本題主要考查勾股定理,根據(jù)題意,畫出圖形,分類進(jìn)行計(jì)算,是解題的關(guān)鍵.16、6【解析】試題分析:設(shè)所求正n邊形邊數(shù)為n,則120°n=(n﹣2)?180°,解得n=6;考點(diǎn):多邊形內(nèi)角與外角.17、【解析】
科學(xué)記數(shù)法的表示形式為ax10n的形式,其中1≤lal<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:0.0000872=故答案為:本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.三、解答題(共7小題,滿分69分)18、(1)S=﹣3x1+14x,≤x<8;(1)5m;(3)46.67m1【解析】
(1)設(shè)花圃寬AB為xm,則長為(14-3x),利用長方形的面積公式,可求出S與x關(guān)系式,根據(jù)墻的最大長度求出x的取值范圍;(1)根據(jù)(1)所求的關(guān)系式把S=2代入即可求出x,即AB;(3)根據(jù)二次函數(shù)的性質(zhì)及x的取值范圍求出即可.【詳解】解:(1)根據(jù)題意,得S=x(14﹣3x),即所求的函數(shù)解析式為:S=﹣3x1+14x,又∵0<14﹣3x≤10,∴;(1)根據(jù)題意,設(shè)花圃寬AB為xm,則長為(14-3x),∴﹣3x1+14x=2.整理,得x1﹣8x+15=0,解得x=3或5,當(dāng)x=3時(shí),長=14﹣9=15>10不成立,當(dāng)x=5時(shí),長=14﹣15=9<10成立,∴AB長為5m;(3)S=14x﹣3x1=﹣3(x﹣4)1+48∵墻的最大可用長度為10m,0≤14﹣3x≤10,∴,∵對(duì)稱軸x=4,開口向下,∴當(dāng)x=m,有最大面積的花圃.二次函數(shù)在實(shí)際生活中的應(yīng)用是本題的考點(diǎn),根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程是解題的關(guān)鍵.19、(1)見解析;(2)CD=;(3)見解析;(4)【解析】試題分析:遷移應(yīng)用:(1)如圖2中,只要證明∠DAB=∠CAE,即可根據(jù)SAS解決問題;
(2)結(jié)論:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD?cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解決問題;
拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.由BC=BE=BD=BA,F(xiàn)E=FC,推出A、D、E、C四點(diǎn)共圓,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等邊三角形;
(4)由AE=4,EC=EF=1,推出AH=HE=2,F(xiàn)H=3,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解決問題.試題解析:遷移應(yīng)用:(1)證明:如圖2,
∵∠BAC=∠DAE=120°,
∴∠DAB=∠CAE,
在△DAE和△EAC中,
DA=EA,∠DAB=∠EAC,AB=AC,
∴△DAB≌△EAC,
(2)結(jié)論:CD=AD+BD.
理由:如圖2-1中,作AH⊥CD于H.
∵△DAB≌△EAC,
∴BD=CE,
在Rt△ADH中,DH=AD?cos30°=AD,
∵AD=AE,AH⊥DE,
∴DH=HE,
∵CD=DE+EC=2DH+BD=AD+BD=.
拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.
∵四邊形ABCD是菱形,∠ABC=120°,
∴△ABD,△BDC是等邊三角形,
∴BA=BD=BC,
∵E、C關(guān)于BM對(duì)稱,
∴BC=BE=BD=BA,F(xiàn)E=FC,
∴A、D、E、C四點(diǎn)共圓,
∴∠ADC=∠AEC=120°,
∴∠FEC=60°,
∴△EFC是等邊三角形,
(4)∵AE=4,EC=EF=1,
∴AH=HE=2,F(xiàn)H=3,
在Rt△BHF中,∵∠BFH=30°,
∴=cos30°,
∴BF=.20、(1);(1)C(﹣1,﹣4),x的取值范圍是x<﹣1或0<x<1.【解析】【分析】(1)作高線AC,根據(jù)等腰直角三角形的性質(zhì)和點(diǎn)A的坐標(biāo)的特點(diǎn)得:x=1x﹣1,可得A的坐標(biāo),從而得雙曲線的解析式;(1)聯(lián)立一次函數(shù)和反比例函數(shù)解析式得方程組,解方程組可得點(diǎn)C的坐標(biāo),根據(jù)圖象可得結(jié)論.【詳解】(1)∵點(diǎn)A在直線y1=1x﹣1上,∴設(shè)A(x,1x﹣1),過A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴;(1)∵,解得:,,∴C(﹣1,﹣4),由圖象得:y1<y1時(shí)x的取值范圍是x<﹣1或0<x<1.【點(diǎn)睛】本題考查了反比例函數(shù)和一次函數(shù)的綜合;熟練掌握通過求點(diǎn)的坐標(biāo)進(jìn)一步求函數(shù)解析式的方法;通過觀察圖象,從交點(diǎn)看起,函數(shù)圖象在上方的函數(shù)值大.21、(1)7,9,7;(2)應(yīng)該選派B;【解析】
(1)分別利用平均數(shù)、中位數(shù)、眾數(shù)分析得出答案;(2)利用方差的意義分析得出答案.【詳解】(1)A成績的平均數(shù)為(9+10+4+3+9+7)=7;眾數(shù)為9;B成績排序后為6,7,7,7,7,8,故中位數(shù)為7;故答案為:7,9,7;(2)=[(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;=[(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]=;從方差看,B的方差小,所以B的成績更穩(wěn)定,從投籃穩(wěn)定性考慮應(yīng)該選派B.此題主要考查了中位數(shù)、眾數(shù)、方差的定義,方差是反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.22、(1)(3,3);(2)頂點(diǎn)N坐標(biāo)為(,);(3)詳見解析;(4)<n<.【解析】
(1)由正方形的性質(zhì)及A、B、D三點(diǎn)的坐標(biāo)求得AD=BC=1即可得;(2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,據(jù)此可得函數(shù)解析式,配方成頂點(diǎn)式即可得出答案;(3)將點(diǎn)N的坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 鐵路貨車檢車員(初級(jí))職業(yè)技能等級(jí)認(rèn)定考試題庫(含答案)
- 衛(wèi)生間沉箱回填方案
- 給水廠課程設(shè)計(jì)12
- 人體脈搏課程設(shè)計(jì)
- 課程設(shè)計(jì)齒輪設(shè)計(jì)
- 情緒課程設(shè)計(jì)反思
- 中學(xué)生男生會(huì)發(fā)言稿
- 柴油機(jī)曲軸設(shè)計(jì)課程設(shè)計(jì)
- 外墻保溫勞務(wù)合同
- 湖南省長沙市明達(dá)中學(xué)2025屆高二物理第一學(xué)期期末調(diào)研試題含解析
- 海南省天一大聯(lián)考2022-2023學(xué)年物理高一第二學(xué)期期中經(jīng)典試題含解析
- 豆腐供貨協(xié)議書
- 新疆維吾爾自治區(qū)2021定額建筑及裝飾工程計(jì)算規(guī)則
- 面試真題及答案銷售類結(jié)構(gòu)化面試題目
- 基本建設(shè)項(xiàng)目竣工財(cái)務(wù)決算審核表
- 人教版數(shù)學(xué)五年級(jí)上冊課堂作業(yè)
- 社交APP產(chǎn)品需求文檔-“SOUL”
- 2023年陜煤集團(tuán)招聘筆試題庫及答案解析
- GB/T 11376-2020金屬及其他無機(jī)覆蓋層金屬的磷化膜
- 高二上學(xué)期化學(xué)人教版(2019)選擇性必修1實(shí)驗(yàn)計(jì)劃
- 六年級(jí)下冊音樂教案第六單元《畢業(yè)歌》人教新課標(biāo)
評(píng)論
0/150
提交評(píng)論