內(nèi)蒙古通遼市奈曼旗市級名校2022年中考沖刺卷數(shù)學(xué)試題含解析_第1頁
內(nèi)蒙古通遼市奈曼旗市級名校2022年中考沖刺卷數(shù)學(xué)試題含解析_第2頁
內(nèi)蒙古通遼市奈曼旗市級名校2022年中考沖刺卷數(shù)學(xué)試題含解析_第3頁
內(nèi)蒙古通遼市奈曼旗市級名校2022年中考沖刺卷數(shù)學(xué)試題含解析_第4頁
內(nèi)蒙古通遼市奈曼旗市級名校2022年中考沖刺卷數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

內(nèi)蒙古通遼市奈曼旗市級名校2022年中考沖刺卷數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,則BC的長度為()A. B. C.3 D.2.若2m﹣n=6,則代數(shù)式m-n+1的值為()A.1 B.2 C.3 D.43.如圖,在平行四邊形ABCD中,AB=4,BC=6,分別以A,C為圓心,以大于AC的長為半徑作弧,兩弧相交于M,N兩點,作直線MN交AD于點E,則△CDE的周長是()A.7 B.10 C.11 D.124.某工程隊開挖一條480米的隧道,開工后,每天比原計劃多挖20米,結(jié)果提前4天完成任務(wù),若設(shè)原計劃每天挖米,那么求時所列方程正確的是()A. B.C. D.5.在如圖的計算程序中,y與x之間的函數(shù)關(guān)系所對應(yīng)的圖象大致是()A. B. C. D.6.觀察下列圖案,是軸對稱而不是中心對稱的是()A. B. C. D.7.已知☉O的半徑為5,且圓心O到直線l的距離是方程x2-4x-12=0的一個根,則直線l與圓的位置關(guān)系是()A.相交B.相切C.相離D.無法確定8.益陽市高新區(qū)某廠今年新招聘一批員工,他們中不同文化程度的人數(shù)見下表:文化程度高中大專本科碩士博士人數(shù)9172095關(guān)于這組文化程度的人數(shù)數(shù)據(jù),以下說法正確的是:()A.眾數(shù)是20 B.中位數(shù)是17 C.平均數(shù)是12 D.方差是269.如果關(guān)于x的方程x2﹣x+1=0有實數(shù)根,那么k的取值范圍是()A.k>0 B.k≥0 C.k>4 D.k≥410.在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點叫做整點.對于一條直線,當(dāng)它與一個圓的公共點都是整點時,我們把這條直線稱為這個圓的“整點直線”.已知⊙O是以原點為圓心,半徑為圓,則⊙O的“整點直線”共有()條A.7 B.8 C.9 D.10二、填空題(本大題共6個小題,每小題3分,共18分)11.若點(a,b)在一次函數(shù)y=2x-3的圖象上,則代數(shù)式4a-2b-3的值是__________12.如圖,在4×4正方形網(wǎng)格中,黑色部分的圖形構(gòu)成一個軸對稱圖形,現(xiàn)在任選取一個白色的小正方形并涂黑,使圖中黑色部分的圖形仍然構(gòu)成一個軸對稱圖形的概率是_____.13.如圖,在一次數(shù)學(xué)活動課上,小明用18個棱長為1的正方體積木搭成一個幾何體,然后他請小亮用其他棱長為1的正方體積木在旁邊再搭一個幾何體,使小亮所搭幾何體恰好和小明所搭幾何體拼成一個無空隙的大長方體(不改變小明所搭幾何體的形狀).請從下面的A、B兩題中任選一題作答,我選擇__________.A、按照小明的要求搭幾何體,小亮至少需要__________個正方體積木.B、按照小明的要求,小亮所搭幾何體的表面積最小為__________.14.一個斜面的坡度i=1:0.75,如果一個物體從斜面的底部沿著斜面方向前進(jìn)了20米,那么這個物體在水平方向上前進(jìn)了_____米.15.如圖,在平面直角坐標(biāo)系中有一正方形AOBC,反比例函數(shù)經(jīng)過正方形AOBC對角線的交點,半徑為()的圓內(nèi)切于△ABC,則k的值為________.16.一輛汽車在坡度為的斜坡上向上行駛130米,那么這輛汽車的高度上升了__________米.三、解答題(共8題,共72分)17.(8分)地下停車場的設(shè)計大大緩解了住宅小區(qū)停車難的問題,如圖是龍泉某小區(qū)的地下停車庫坡道入口的設(shè)計示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根據(jù)規(guī)定,地下停車庫坡道入口上方要張貼限高標(biāo)志,以便告知駕駛員所駕車輛能否安全駛?cè)耄傉J(rèn)為CD的長就是所限制的高度,而小亮認(rèn)為應(yīng)該以CE的長作為限制的高度.小剛和小亮誰說得對?請你判斷并計算出正確的限制高度.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)18.(8分)如圖,△ABC內(nèi)接于⊙O,∠B=600,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑.19.(8分)某區(qū)對即將參加中考的5000名初中畢業(yè)生進(jìn)行了一次視力抽樣調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分.請根據(jù)圖表信息回答下列問題:視力頻數(shù)(人)頻率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)本次調(diào)查的樣本為,樣本容量為;在頻數(shù)分布表中,a=,b=,并將頻數(shù)分布直方圖補充完整;若視力在4.6以上(含4.6)均屬正常,根據(jù)上述信息估計全區(qū)初中畢業(yè)生中視力正常的學(xué)生有多少人?20.(8分)某校對學(xué)生就“食品安全知識”進(jìn)行了抽樣調(diào)查(每人選填一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整)。請根據(jù)圖中信息,解答下列問題:(1)根據(jù)圖中數(shù)據(jù),求出扇形統(tǒng)計圖中的值,并補全條形統(tǒng)計圖。(2)該校共有學(xué)生900人,估計該校學(xué)生對“食品安全知識”非常了解的人數(shù).21.(8分)在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A(0,1),點C(1,0),正方形AOCD的兩條對角線的交點為B,延長BD至點G,使DG=BD,延長BC至點E,使CE=BC,以BG,BE為鄰邊作正方形BEFG.(Ⅰ)如圖①,求OD的長及的值;(Ⅱ)如圖②,正方形AOCD固定,將正方形BEFG繞點B逆時針旋轉(zhuǎn),得正方形BE′F′G′,記旋轉(zhuǎn)角為α(0°<α<360°),連接AG′.①在旋轉(zhuǎn)過程中,當(dāng)∠BAG′=90°時,求α的大小;②在旋轉(zhuǎn)過程中,求AF′的長取最大值時,點F′的坐標(biāo)及此時α的大?。ㄖ苯訉懗鼋Y(jié)果即可).22.(10分)AB為⊙O直徑,C為⊙O上的一點,過點C的切線與AB的延長線相交于點D,CA=CD.(1)連接BC,求證:BC=OB;(2)E是中點,連接CE,BE,若BE=2,求CE的長.23.(12分)目前節(jié)能燈在城市已基本普及,今年某省面向農(nóng)村地區(qū)推廣,為響應(yīng)號召,某商場用3300元購進(jìn)節(jié)能燈100只,這兩種節(jié)能燈的進(jìn)價、售價如表:進(jìn)價元只售價元只甲種節(jié)能燈3040乙種節(jié)能燈3550求甲、乙兩種節(jié)能燈各進(jìn)多少只?全部售完100只節(jié)能燈后,該商場獲利多少元?24.如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖像與邊長是6的正方形的兩邊,分別相交于,兩點.若點是邊的中點,求反比例函數(shù)的解析式和點的坐標(biāo);若,求直線的解析式及的面積

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】∵∠AED=∠B,∠A=∠A

∴△ADE∽△ACB∴,∵DE=6,AB=10,AE=8,∴,解得BC=.故選A.2、D【解析】

先對m-n+1變形得到(2m﹣n)+1,再將2m﹣n=6整體代入進(jìn)行計算,即可得到答案.【詳解】mn+1=(2m﹣n)+1當(dāng)2m﹣n=6時,原式=×6+1=3+1=4,故選:D.【點睛】本題考查代數(shù)式,解題的關(guān)鍵是掌握整體代入法.3、B【解析】∵四邊形ABCD是平行四邊形,

∴AD=BC=4,CD=AB=6,

∵由作法可知,直線MN是線段AC的垂直平分線,

∴AE=CE,

∴AE+DE=CE+DE=AD,

∴△CDE的周長=CE+DE+CD=AD+CD=4+6=1.

故選B.4、C【解析】

本題的關(guān)鍵描述語是:“提前1天完成任務(wù)”;等量關(guān)系為:原計劃用時?實際用時=1.【詳解】解:原計劃用時為:,實際用時為:.所列方程為:,故選C.【點睛】本題考查列分式方程,分析題意,找到關(guān)鍵描述語,找到合適的等量關(guān)系是解決問題的關(guān)鍵.5、A【解析】函數(shù)→一次函數(shù)的圖像及性質(zhì)6、A【解析】試題解析:試題解析:根據(jù)軸對稱圖形和中心對稱圖形的概念進(jìn)行判斷可得:A、是軸對稱圖形,不是中心對稱圖形,故本選項符合題意;B、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;C、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;D、是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意.故選A.點睛:在同一平面內(nèi),如果把一個圖形繞某一點旋轉(zhuǎn),旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.這個旋轉(zhuǎn)點,就叫做對稱中心.7、C【解析】

首先求出方程的根,再利用半徑長度,由點O到直線a的距離為d,若d<r,則直線與圓相交;若d=r,則直線與圓相切;若d>r,則直線與與圓相離.【詳解】∵x2-4x-12=0,

(x+2)(x-6)=0,

解得:x1=-2(不合題意舍去),x2=6,

∵點O到直線l距離是方程x2-4x-12=0的一個根,即為6,

∴點O到直線l的距離d=6,r=5,

∴d>r,

∴直線l與圓相離.故選:C【點睛】本題考核知識點:直線與圓的位置關(guān)系.解題關(guān)鍵點:理解直線與圓的位置關(guān)系的判定方法.8、C【解析】

根據(jù)眾數(shù)、中位數(shù)、平均數(shù)以及方差的概念求解.【詳解】A、這組數(shù)據(jù)中9出現(xiàn)的次數(shù)最多,眾數(shù)為9,故本選項錯誤;B、因為共有5組,所以第3組的人數(shù)為中位數(shù),即9是中位數(shù),故本選項錯誤;C、平均數(shù)==12,故本選項正確;D、方差=[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=,故本選項錯誤.故選C.【點睛】本題考查了中位數(shù)、平均數(shù)、眾數(shù)的知識,解答本題的關(guān)鍵是掌握各知識點的概念.9、D【解析】

由被開方數(shù)非負(fù)結(jié)合根的判別式△≥0,即可得出關(guān)于k的一元一次不等式組,解之即可得出k的取值范圍.【詳解】∵關(guān)于x的方程x2-x+1=0有實數(shù)根,∴,解得:k≥1.故選D.【點睛】本題考查了根的判別式,牢記“當(dāng)△≥0時,方程有實數(shù)根”是解題的關(guān)鍵.10、D【解析】試題分析:根據(jù)圓的半徑可知:在圓上的整數(shù)點為(2,2)、(2,-2),(-2,-2),(-2,2)這四個點,經(jīng)過任意兩點的“整點直線”有6條,經(jīng)過其中的任意一點且圓相切的“整點直線”有4條,則合計共有10條.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

根據(jù)題意,將點(a,b)代入函數(shù)解析式即可求得2a-b的值,變形即可求得所求式子的值.【詳解】∵點(a,b)在一次函數(shù)y=2x-1的圖象上,∴b=2a-1,∴2a-b=1,∴4a-2b=6,∴4a-2b-1=6-1=1,故答案為:1.【點睛】本題考查一次函數(shù)圖象上點的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.12、【解析】如圖,有5種不同取法;故概率為.13、A,18,1【解析】

A、首先確定小明所搭幾何體所需的正方體的個數(shù),然后確定兩人共搭建幾何體所需小立方體的數(shù)量,求差即可;

B、分別得到前后面,上下面,左右面的面積,相加即可求解.【詳解】A、∵小亮所搭幾何體恰好可以和小明所搭幾何體拼成一個無縫隙的大長方體,

∴該長方體需要小立方體4×32=36個,

∵小明用18個邊長為1的小正方體搭成了一個幾何體,

∴小亮至少還需36-18=18個小立方體,

B、表面積為:2×(8+8+7)=1.

故答案是:A,18,1.【點睛】考查了由三視圖判斷幾何體的知識,能夠確定兩人所搭幾何體的形狀是解答本題的關(guān)鍵.14、1.【解析】

直接根據(jù)題意得出直角邊的比值,即可表示出各邊長進(jìn)而得出答案.【詳解】如圖所示:∵坡度i=1:0.75,∴AC:BC=1:0.75=4:3,∴設(shè)AC=4x,則BC=3x,∴AB==5x,∵AB=20m,∴5x=20,解得:x=4,故3x=1,故這個物體在水平方向上前進(jìn)了1m.故答案為:1.【點睛】此題主要考查坡度的運用,需注意的是坡度是坡角的正切值,是鉛直高度h和水平寬l的比,我們把斜坡面與水平面的夾角叫做坡角,若用α表示坡角,可知坡度與坡角的關(guān)系是.15、1【解析】試題解析:設(shè)正方形對角線交點為D,過點D作DM⊥AO于點M,DN⊥BO于點N;設(shè)圓心為Q,切點為H、E,連接QH、QE.∵在正方形AOBC中,反比例函數(shù)y=經(jīng)過正方形AOBC對角線的交點,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四邊形HQEC是正方形,∵半徑為(1-2)的圓內(nèi)切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(1-2)2,∴QC2=18-32=(1-1)2,∴QC=1-1,∴CD=1-1+(1-2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=1,∴DN×NO=1,即:xy=k=1.【點睛】此題主要考查了正方形的性質(zhì)以及三角形內(nèi)切圓的性質(zhì)以及待定系數(shù)法求反比例函數(shù)解析式,根據(jù)已知求出CD的長度,進(jìn)而得出DN×NO=1是解決問題的關(guān)鍵.16、50.【解析】

根據(jù)坡度的定義可以求得AC、BC的比值,根據(jù)AC、BC的比值和AB的長度即可求得AC的值,即可解題.【詳解】解:如圖,米,設(shè),則,則,解得,故答案為:50.【點睛】本題考查了勾股定理在直角三角形中的運用,坡度的定義及直角三角形中三角函數(shù)值的計算,屬于基礎(chǔ)題.三、解答題(共8題,共72分)17、小亮說的對,CE為2.6m.【解析】

先根據(jù)CE⊥AE,判斷出CE為高,再根據(jù)解直角三角形的知識解答.【詳解】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=BDBA∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=CECD∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),∵2.6m<2.7m,且CE⊥AE,∴小亮說的對.答:小亮說的對,CE為2.6m.【點睛】本題主要考查了解直角三角形的應(yīng)用,主要是正弦、正切概念及運算,解決本題的關(guān)鍵把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.18、(1)見解析(2)2【解析】解:(1)證明:連接OA,∵∠B=600,∴∠AOC=2∠B=1.∵OA=OC,∴∠OAC=∠OCA=2.又∵AP=AC,∴∠P=∠ACP=2.∴∠OAP=∠AOC﹣∠P=3.∴OA⊥PA.∵OA是⊙O的半徑,∴PA是⊙O的切線.(2)在Rt△OAP中,∵∠P=2,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OA.∵PD=,∴2OA=2PD=2.∴⊙O的直徑為2..(1)連接OA,根據(jù)圓周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=2,再由AP=AC得出∠P=2,繼而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,從而得出結(jié)論.(2)利用含2的直角三角形的性質(zhì)求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直徑.19、200名初中畢業(yè)生的視力情況200600.05【解析】

(1)根據(jù)視力在4.0≤x<4.3范圍內(nèi)的頻數(shù)除以頻率即可求得樣本容量;(2)根據(jù)樣本容量,根據(jù)其對應(yīng)的已知頻率或頻數(shù)即可求得a,b的值;(3)求出樣本中視力正常所占百分比乘以5000即可得解.【詳解】(1)根據(jù)題意得:20÷0.1=200,即本次調(diào)查的樣本容量為200,故答案為200;(2)a=200×0.3=60,b=10÷200=0.05,補全頻數(shù)分布圖,如圖所示,故答案為60,0.05;(3)根據(jù)題意得:5000×=3500(人),則全區(qū)初中畢業(yè)生中視力正常的學(xué)生有估計有3500人.20、(1),補全條形統(tǒng)計圖見解析;(2)該校學(xué)生對“食品安全知識”非常了解的人數(shù)為135人。【解析】試題分析:(1)由統(tǒng)計圖中的信息可知,B組學(xué)生有32人,占總數(shù)的40%,由此可得被抽查學(xué)生總?cè)藬?shù)為:32÷40%=80(人),結(jié)合C組學(xué)生有28人可得:m%=28÷80×100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A組由12人,由此即可補全條形統(tǒng)計圖了;(2)由(1)中計算可知,A組有12名學(xué)生,占總數(shù)的12÷80×100%=15%,結(jié)合全校總?cè)藬?shù)為900可得900×15%=135(人),即全?!胺浅A私狻薄笆称钒踩R”的有135人.試題解析:(1)由已知條件可得:被抽查學(xué)生總數(shù)為32÷40%=80(人),∴m%=28÷80×100%=35%,∴m=35,A組人數(shù)為:80-32-28-8=12(人),將圖形統(tǒng)計圖補充完整如下圖所示:(2)由題意可得:900×(12÷80×100%)=900×15%=135(人).答:全校學(xué)生對“食品安全知識”非常了解的人數(shù)為135人.21、(Ⅰ)(Ⅱ)①α=30°或150°時,∠BAG′=90°②當(dāng)α=315°時,A、B、F′在一條直線上時,AF′的長最大,最大值為+2,此時α=315°,F(xiàn)′(+,﹣)【解析】

(1)根據(jù)正方形的性質(zhì)以及勾股定理即可解決問題,(2)①因為∠BAG′=90°,BG′=2AB,可知sin∠AG′B=,推出∠AG′B=30°,推出旋轉(zhuǎn)角α=30°,據(jù)對稱性可知,當(dāng)∠ABG″=60°時,∠BAG″=90°,也滿足條件,此時旋轉(zhuǎn)角α=150°,②當(dāng)α=315°時,A、B、F′在一條直線上時,AF′的長最大.【詳解】(Ⅰ)如圖1中,∵A(0,1),∴OA=1,∵四邊形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如圖2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋轉(zhuǎn)角α=30°,根據(jù)對稱性可知,當(dāng)∠ABG″=60°時,∠BAG″=90°,也滿足條件,此時旋轉(zhuǎn)角α=150°,綜上所述,旋轉(zhuǎn)角α=30°或150°時,∠BAG′=90°.②如圖3中,連接OF,∵四邊形BE′F′G′是正方形的邊長為∴BF′=2,∴當(dāng)α=315°時,A、B、F′在一條直線上時,AF′的長最大,最大值為+2,此時α=315°,F(xiàn)′(+,﹣)【點睛】本題考查的是正方形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)以及銳角三角函數(shù)的定義,解決本題的關(guān)鍵是要熟練掌握正方形的四條邊相等、四個角相等,旋轉(zhuǎn)變換的性質(zhì)以及特殊角的三角函數(shù)值的應(yīng)用.22、(2)見解析;(2)2+.【解析】

(2)連接OC,根據(jù)圓周角定理、切線的性質(zhì)得到∠ACO=∠DCB,根據(jù)CA=CD得到∠CAD=∠D,證明∠COB=∠CBO,根據(jù)等角對等邊證明;

(2)連接AE,過點B作BF⊥CE于點F,根據(jù)勾股定理計算即可.【詳解】(2)證明:連接OC,∵AB為⊙O直徑,∴∠ACB=90°,∵CD為⊙O切線∴∠OCD=90°,∴∠A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論