陜西省西安市未央?yún)^(qū)重點中學2021-2022學年中考數(shù)學仿真試卷含解析_第1頁
陜西省西安市未央?yún)^(qū)重點中學2021-2022學年中考數(shù)學仿真試卷含解析_第2頁
陜西省西安市未央?yún)^(qū)重點中學2021-2022學年中考數(shù)學仿真試卷含解析_第3頁
陜西省西安市未央?yún)^(qū)重點中學2021-2022學年中考數(shù)學仿真試卷含解析_第4頁
陜西省西安市未央?yún)^(qū)重點中學2021-2022學年中考數(shù)學仿真試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

陜西省西安市未央?yún)^(qū)重點中學2021-2022學年中考數(shù)學仿真試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在下列四個圖案中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C.. D.2.定義:如果一元二次方程ax2+bx+c=0(a≠0)滿足a+b+c=0,那么我們稱這個方程為“和諧”方程;如果一元二次方程ax2+bx+c=0(a≠0)滿足a﹣b+c=0那么我們稱這個方程為“美好”方程,如果一個一元二次方程既是“和諧”方程又是“美好”方程,則下列結(jié)論正確的是()A.方有兩個相等的實數(shù)根 B.方程有一根等于0C.方程兩根之和等于0 D.方程兩根之積等于03.實數(shù)a、b在數(shù)軸上的對應點的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)<﹣1 B.a(chǎn)b>0 C.a(chǎn)﹣b<0 D.a(chǎn)+b<04.已知一元二次方程1–(x–3)(x+2)=0,有兩個實數(shù)根x1和x2(x1<x2),則下列判斷正確的是()A.–2<x1<x2<3 B.x1<–2<3<x2 C.–2<x1<3<x2 D.x1<–2<x2<35.在平面直角坐標系中,將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標是()A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)6.如圖,已知四邊形ABCD,R,P分別是DC,BC上的點,E,F(xiàn)分別是AP,RP的中點,當點P在BC上從點B向點C移動而點R不動時,那么下列結(jié)論成立的是().A.線段EF的長逐漸增大 B.線段EF的長逐漸減少C.線段EF的長不變 D.線段EF的長不能確定7.已知拋物線y=ax2+bx+c與x軸交于(x1,0)、(x2,0)兩點,且0<x1<1,1<x2<2與y軸交于(0,-2),下列結(jié)論:①2a+b>1;②a+b<2;③3a+b>0;④a<-1,其中正確結(jié)論的個數(shù)為()A.1個 B.2個 C.3個 D.4個8.“龜兔賽跑”是同學們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時間t的關系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是()A.賽跑中,兔子共休息了50分鐘B.烏龜在這次比賽中的平均速度是0.1米/分鐘C.兔子比烏龜早到達終點10分鐘D.烏龜追上兔子用了20分鐘9.如圖,△ABC內(nèi)接于⊙O,BC為直徑,AB=8,AC=6,D是弧AB的中點,CD與AB的交點為E,則CE:DE等于()A.3:1 B.4:1 C.5:2 D.7:210.如圖,點E是矩形ABCD的邊AD的中點,且BE⊥AC于點F,則下列結(jié)論中錯誤的是()A.AF=CF B.∠DCF=∠DFCC.圖中與△AEF相似的三角形共有5個 D.tan∠CAD=二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在2×4的正方形網(wǎng)格中,每個小正方形的邊長均為1,每個小正方形的頂點叫做格點,△ABC的頂點都在格點上,將△ABC繞著點C按順時針方向旋轉(zhuǎn)一定角度后,得到△A'B'C',點A'、B'在格點上,則點A走過的路徑長為_____(結(jié)果保留π)12.如圖,在△ABC中,∠C=40°,CA=CB,則△ABC的外角∠ABD=°.13.若式子在實數(shù)范圍內(nèi)有意義,則x的取值范圍是_______.14.已知反比例函數(shù)的圖像經(jīng)過點(-2017,2018),當時,函數(shù)值y隨自變量x的值增大而_________.(填“增大”或“減小”)15.閱讀下面材料:在數(shù)學課上,老師提出利用尺規(guī)作圖完成下面問題:已知:求作:的內(nèi)切圓.小明的作法如下:如圖2,作,的平分線BE和CF,兩線相交于點O;過點O作,垂足為點D;

點O為圓心,OD長為半徑作所以,即為所求作的圓.請回答:該尺規(guī)作圖的依據(jù)是______.16.如圖,在矩形ABCD中,AD=3,將矩形ABCD繞點A逆時針旋轉(zhuǎn),得到矩形AEFG,點B的對應點E落在CD上,且DE=EF,則AB的長為_____.17.一次函數(shù)y=kx+b的圖象如圖所示,當y>0時,x的取值范圍是_____.三、解答題(共7小題,滿分69分)18.(10分)小王是“新星廠”的一名工人,請你閱讀下列信息:信息一:工人工作時間:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生產(chǎn)甲、乙兩種產(chǎn)品的件數(shù)與所用時間的關系見下表:生產(chǎn)甲產(chǎn)品數(shù)(件)生產(chǎn)乙產(chǎn)品數(shù)(件)所用時間(分鐘)10103503020850信息三:按件計酬,每生產(chǎn)一件甲種產(chǎn)品得1.50元,每生產(chǎn)一件乙種產(chǎn)品得2.80元.信息四:該廠工人每月收入由底薪和計酬工資兩部分構(gòu)成,小王每月的底薪為1900元,請根據(jù)以上信息,解答下列問題:(1)小王每生產(chǎn)一件甲種產(chǎn)品,每生產(chǎn)一件乙種產(chǎn)品分別需要多少分鐘;(2)2018年1月工廠要求小王生產(chǎn)甲種產(chǎn)品的件數(shù)不少于60件,則小王該月收入最多是多少元?此時小王生產(chǎn)的甲、乙兩種產(chǎn)品分別是多少件?19.(5分)今年3月12日植樹節(jié)期間,學校預購進A,B兩種樹苗.若購進A種樹苗3棵,B種樹苗5棵,需2100元;若購進A種樹苗4棵,B種樹苗10棵,需3800元.求購進A,B兩種樹苗的單價;若該學校準備用不多于8000元的錢購進這兩種樹苗共30棵,求A種樹苗至少需購進多少棵.20.(8分)化簡(),并說明原代數(shù)式的值能否等于-1.21.(10分)為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規(guī)定每盒售價不得少于45元.根據(jù)以往銷售經(jīng)驗發(fā)現(xiàn);當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關系式;當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?為穩(wěn)定物價,有關管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?22.(10分)問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD=∠BAC=60°,于是==遷移應用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.(1)求證:△ADB≌△AEC;(2)若AD=2,BD=3,請計算線段CD的長;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點C關于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.(3)證明:△CEF是等邊三角形;(4)若AE=4,CE=1,求BF的長.23.(12分)如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD,過點D作DE⊥AC,垂足為點E,交AB的延長線于點F.(1)求證:EF是⊙O的切線.(2)如果⊙O的半徑為5,sin∠ADE=,求BF的長.24.(14分)某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計劃再一次性購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.求y關于x的函數(shù)關系式;該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?實際進貨時,廠家對A型電腦出廠價下調(diào)a(0<a<200)元,且限定商店最多購進A型電腦60臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息,設計出使這100臺電腦銷售總利潤最大的進貨方案.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的定義:如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形;中心對稱圖形的定義:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心,因此:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不符合題意;D、是軸對稱圖形,不是中心對稱圖形,不符合題意.故選B.考點:軸對稱圖形和中心對稱圖形2、C【解析】試題分析:根據(jù)已知得出方程ax2+bx+c=0(a≠0)有兩個根x=1和x=﹣1,再判斷即可.解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,把x=﹣1代入方程ax2+bx+c=0得出a﹣b+c=0,∴方程ax2+bx+c=0(a≠0)有兩個根x=1和x=﹣1,∴1+(﹣1)=0,即只有選項C正確;選項A、B、D都錯誤;故選C.3、C【解析】

直接利用a,b在數(shù)軸上的位置,進而分別對各個選項進行分析得出答案.【詳解】選項A,從數(shù)軸上看出,a在﹣1與0之間,∴﹣1<a<0,故選項A不合題意;選項B,從數(shù)軸上看出,a在原點左側(cè),b在原點右側(cè),∴a<0,b>0,∴ab<0,故選項B不合題意;選項C,從數(shù)軸上看出,a在b的左側(cè),∴a<b,即a﹣b<0,故選項C符合題意;選項D,從數(shù)軸上看出,a在﹣1與0之間,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故選項D不合題意.故選:C.【點睛】本題考查數(shù)軸和有理數(shù)的四則運算,解題的關鍵是掌握利用數(shù)軸表示有理數(shù)的大小.4、B【解析】

設y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根據(jù)二次函數(shù)的圖像性質(zhì)可知y1=1﹣(x﹣3)(x+2)的圖像可看做y=-(x﹣3)(x+2)的圖像向上平移1個單位長度,根據(jù)圖像的開口方向即可得出答案.【詳解】設y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)∵y=0時,x=-2或x=3,∴y=-(x﹣3)(x+2)的圖像與x軸的交點為(-2,0)(3,0),∵1﹣(x﹣3)(x+2)=0,∴y1=1﹣(x﹣3)(x+2)的圖像可看做y=-(x﹣3)(x+2)的圖像向上平移1,與x軸的交點的橫坐標為x1、x2,∵-1<0,∴兩個拋物線的開口向下,∴x1<﹣2<3<x2,故選B.【點睛】本題考查二次函數(shù)圖像性質(zhì)及平移的特點,根據(jù)開口方向確定函數(shù)的增減性是解題關鍵.5、B【解析】試題分析:由平移規(guī)律可得將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標是(1,5),故選B.考點:點的平移.6、C【解析】

因為R不動,所以AR不變.根據(jù)三角形中位線定理可得EF=AR,因此線段EF的長不變.【詳解】如圖,連接AR,∵E、F分別是AP、RP的中點,∴EF為△APR的中位線,∴EF=AR,為定值.∴線段EF的長不改變.故選:C.【點睛】本題考查了三角形的中位線定理,只要三角形的邊AR不變,則對應的中位線的長度就不變.7、A【解析】

如圖,且圖像與y軸交于點,可知該拋物線的開口向下,即,①當時,故①錯誤.②由圖像可知,當時,∴∴故②錯誤.③∵∴,又∵,∴,∴,∴,故③錯誤;④∵,,又∵,∴.故④正確.故答案選A.【點睛】本題考查二次函數(shù)系數(shù)符號的確定由拋物線的開口方向、對稱軸和拋物線與坐標軸的交點確定.8、D【解析】分析:根據(jù)圖象得出相關信息,并對各選項一一進行判斷即可.詳解:由圖象可知,在賽跑中,兔子共休息了:50-10=40(分鐘),故A選項錯誤;烏龜跑500米用了50分鐘,平均速度為:(米/分鐘),故B選項錯誤;兔子是用60分鐘到達終點,烏龜是用50分鐘到達終點,兔子比烏龜晚到達終點10分鐘,故C選項錯誤;在比賽20分鐘時,烏龜和兔子都距起點200米,即烏龜追上兔子用了20分鐘,故D選項正確.故選D.點睛:本題考查了從圖象中獲取信息的能力.正確識別圖象、獲取信息并進行判斷是解題的關鍵.9、A【解析】

利用垂徑定理的推論得出DO⊥AB,AF=BF,進而得出DF的長和△DEF∽△CEA,再利用相似三角形的性質(zhì)求出即可.【詳解】連接DO,交AB于點F,∵D是的中點,∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位線,AC∥DO,∵BC為直徑,AB=8,AC=6,∴BC=10,F(xiàn)O=AC=1,∴DO=5,∴DF=5-1=2,∵AC∥DO,∴△DEF∽△CEA,∴,∴==1.故選:A.【點睛】此題主要考查了垂徑定理的推論以及相似三角形的判定與性質(zhì),根據(jù)已知得出△DEF∽△CEA是解題關鍵.10、D【解析】

由又AD∥BC,所以故A正確,不符合題意;過D作DM∥BE交AC于N,得到四邊形BMDE是平行四邊形,求出BM=DE=BC,得到CN=NF,根據(jù)線段的垂直平分線的性質(zhì)可得結(jié)論,故B正確,不符合題意;

根據(jù)相似三角形的判定即可求解,故C正確,不符合題意;

由△BAE∽△ADC,得到CD與AD的大小關系,根據(jù)正切函數(shù)可求tan∠CAD的值,故D錯誤,符合題意.【詳解】A.∵AD∥BC,∴△AEF∽△CBF,∴∵∴,故A正確,不符合題意;B.過D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正確,不符合題意;C.圖中與△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5個,故C正確,不符合題意;D.設AD=a,AB=b,由△BAE∽△ADC,有∵tan∠CAD故D錯誤,符合題意.故選:D.【點睛】考查相似三角形的判定,矩形的性質(zhì),解直角三角形,掌握相似三角形的判定方法是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】分析:連接AA′,根據(jù)勾股定理求出AC=AC′,及AA′的長,然后根據(jù)勾股定理的逆定理得出△ACA′為等腰直角三角形,然后根據(jù)弧長公式求解即可.詳解:連接AA′,如圖所示.∵AC=A′C=,AA′=,∴AC2+A′C2=AA′2,∴△ACA′為等腰直角三角形,∴∠ACA′=90°,∴點A走過的路徑長=×2πAC=π.故答案為:π.點睛:本題主要考查了幾何變換的類型以及勾股定理及逆定理的運用,弧長公式,解題時注意:在旋轉(zhuǎn)變換下,對應線段相等.解決問題的關鍵是找出變換的規(guī)律,根據(jù)弧長公式求解.12、110【解析】試題解析:解:∵∠C=40°,CA=CB,∴∠A=∠ABC=70°,∴∠ABD=∠A+∠C=110°.考點:等腰三角形的性質(zhì)、三角形外角的性質(zhì)點評:本題主要考查了等腰三角形的性質(zhì)、三角形外角的性質(zhì).等腰三角形的兩個底角相等;三角形的外角等于與它不相鄰的兩個內(nèi)角之和.13、x≠﹣1【解析】

分式有意義的條件是分母不等于零.【詳解】∵式子在實數(shù)范圍內(nèi)有意義,∴x+1≠0,解得:x≠-1.

故答案是:x≠-1.【點睛】考查的是分式有意義的條件,掌握分式有意義的條件是解題的關鍵.14、增大【解析】

根據(jù)題意,利用待定系數(shù)法解出系數(shù)的符號,再根據(jù)k值的正負確定函數(shù)值的增減性.【詳解】∵反比例函數(shù)的圖像經(jīng)過點(-2017,2018),∴k=-2017×2018<0,∴當x>0時,y隨x的增大而增大.故答案為增大.15、到角兩邊距離相等的點在角平分線上;兩點確定一條直線;角平分上的點到角兩邊的距離相等;圓的定義;經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線.【解析】

根據(jù)三角形的內(nèi)切圓,三角形的內(nèi)心的定義,角平分線的性質(zhì)即可解答.【詳解】解:該尺規(guī)作圖的依據(jù)是到角兩邊距離相等的點在角平分線上;兩點確定一條直線;角平分上的點到角兩邊的距離相等;圓的定義;經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線;故答案為到角兩邊距離相等的點在角平分線上;兩點確定一條直線;角平分上的點到角兩邊的距離相等;圓的定義;經(jīng)過半徑的外端,并且垂直于這條半徑的直線是圓的切線.【點睛】此題主要考查了復雜作圖,三角形的內(nèi)切圓與內(nèi)心,關鍵是掌握角平分線的性質(zhì).16、3【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)知AB=AE,在直角三角形ADE中根據(jù)勾股定理求得AE長即可得.【詳解】∵四邊形ABCD是矩形,∴∠D=90°,BC=AD=3,∵將矩形ABCD繞點A逆時針旋轉(zhuǎn)得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴AE==3,∴AB=3,故答案為3.【點睛】本題考查矩形的性質(zhì)和旋轉(zhuǎn)的性質(zhì),熟知旋轉(zhuǎn)前后哪些線段是相等的是解題的關鍵.17、【解析】試題解析:根據(jù)圖象和數(shù)據(jù)可知,當y>0即圖象在x軸的上方,x>1.

故答案為x>1.三、解答題(共7小題,滿分69分)18、(1)生產(chǎn)一件甲產(chǎn)品需要15分,生產(chǎn)一件乙產(chǎn)品需要20分;(2)小王該月最多能得3544元,此時生產(chǎn)甲、乙兩種產(chǎn)品分別60,555件.【解析】

(1)設生產(chǎn)一件甲種產(chǎn)品需x分,生產(chǎn)一件乙種產(chǎn)品需y分,利用待定系數(shù)法求出x,y的值.

(2)設生產(chǎn)甲種產(chǎn)品用x分,則生產(chǎn)乙種產(chǎn)品用(25×8×60-x)分,分別求出甲乙兩種生產(chǎn)多少件產(chǎn)品.【詳解】(1)設生產(chǎn)一件甲種產(chǎn)品需x分,生產(chǎn)一件乙種產(chǎn)品需y分.由題意得:,解這個方程組得:,答:生產(chǎn)一件甲產(chǎn)品需要15分,生產(chǎn)一件乙產(chǎn)品需要20分.(2)設生產(chǎn)甲種產(chǎn)品共用x分,則生產(chǎn)乙種產(chǎn)品用(25×8×60-x)分.則生產(chǎn)甲種產(chǎn)品件,生產(chǎn)乙種產(chǎn)品件.∴w總額=1.5×+2.8×=0.1x+×2.8=0.1x+1680-0.14x=-0.04x+1680,又≥60,得x≥900,由一次函數(shù)的增減性,當x=900時w取得最大值,此時w=0.04×900+1680=1644(元),則小王該月收入最多是1644+1900=3544(元),此時甲有=60(件),乙有:=555(件),答:小王該月最多能得3544元,此時生產(chǎn)甲、乙兩種產(chǎn)品分別60,555件.【點睛】考查了一次函數(shù)和二元一次方程組的應用.解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系,列出方程組,再求解.19、(1)A種樹苗的單價為200元,B種樹苗的單價為300元;(2)10棵【解析】試題分析:(1)設B種樹苗的單價為x元,則A種樹苗的單價為y元.則由等量關系列出方程組解答即可;(2)設購買A種樹苗a棵,則B種樹苗為(30﹣a)棵,然后根據(jù)總費用和兩種樹苗的棵數(shù)關系列出不等式解答即可.試題解析:(1)設B種樹苗的單價為x元,則A種樹苗的單價為y元,可得:,解得:,答:A種樹苗的單價為200元,B種樹苗的單價為300元.(2)設購買A種樹苗a棵,則B種樹苗為(30﹣a)棵,可得:200a+300(30﹣a)≤8000,解得:a≥10,答:A種樹苗至少需購進10棵.考點:1.一元一次不等式的應用;2.二元一次方程組的應用20、見解析【解析】

先根據(jù)分式的混合運算順序和運算法則化簡原式,若原代數(shù)式的值為﹣1,則=﹣1,截至求得x的值,再根據(jù)分式有意義的條件即可作出判斷.【詳解】原式=[===,若原代數(shù)式的值為﹣1,則=﹣1,解得:x=0,因為x=0時,原式?jīng)]有意義,所以原代數(shù)式的值不能等于﹣1.【點睛】本題考查了分式的化簡求值,熟練掌握運算法則是解題的關鍵.21、(1)y=﹣20x+1600;(2)當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元;(3)超市每天至少銷售粽子440盒.【解析】試題分析:(1)根據(jù)“當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒”即可得出每天的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關系式;(2)根據(jù)利潤=1盒粽子所獲得的利潤×銷售量列式整理,再根據(jù)二次函數(shù)的最值問題解答;(3)先由(2)中所求得的P與x的函數(shù)關系式,根據(jù)這種粽子的每盒售價不得高于58元,且每天銷售粽子的利潤不低于6000元,求出x的取值范圍,再根據(jù)(1)中所求得的銷售量y(盒)與每盒售價x(元)之間的函數(shù)關系式即可求解.試題解析:(1)由題意得,==;(2)P===,∵x≥45,a=﹣20<0,∴當x=60時,P最大值=8000元,即當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元;(3)由題意,得=6000,解得,,∵拋物線P=的開口向下,∴當50≤x≤70時,每天銷售粽子的利潤不低于6000元的利潤,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y隨x的增大而減小,∴當x=58時,y最小值=﹣20×58+1600=440,即超市每天至少銷售粽子440盒.考點:二次函數(shù)的應用.22、(1)見解析;(2)CD=;(3)見解析;(4)【解析】試題分析:遷移應用:(1)如圖2中,只要證明∠DAB=∠CAE,即可根據(jù)SAS解決問題;

(2)結(jié)論:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD?cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解決問題;

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.由BC=BE=BD=BA,F(xiàn)E=FC,推出A、D、E、C四點共圓,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等邊三角形;

(4)由AE=4,EC=EF=1,推出AH=HE=2,F(xiàn)H=3,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解決問題.試題解析:遷移應用:(1)證明:如圖2,

∵∠BAC=∠DAE=120°,

∴∠DAB=∠CAE,

在△DAE和△EAC中,

DA=EA,∠DAB=∠EAC,AB=AC,

∴△DAB≌△EAC,

(2)結(jié)論:CD=AD+BD.

理由:如圖2-1中,作AH⊥CD于H.

∵△DAB≌△EAC,

∴BD=CE,

在Rt△ADH中,DH=AD?cos30°=AD,

∵AD=AE,AH⊥DE,

∴DH=HE,

∵CD=DE+EC=2DH+BD=AD+BD=.

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.

∵四邊形ABCD是菱形,∠ABC=120°,

∴△ABD,△BDC是等邊三角形,

∴BA=BD=BC,

∵E、C關于BM對稱,

∴BC=BE=BD=BA,F(xiàn)E=FC,

∴A、D、E、C四點共圓,

∴∠ADC=∠AEC=120°,

∴∠FEC=60°,

∴△EFC是等邊三角形,

(4)∵AE=4,EC=EF=1,

∴AH=HE=2,F(xiàn)H=3,

在Rt△BHF中,∵∠BFH=30°,

∴=cos30°,

∴BF=.23、(1)答案見解析;(2).【解析】試題分析:(1)連接OD,AB為⊙O的直徑得∠ADB=90°,由AB=AC,根據(jù)等腰三角形性質(zhì)得AD平分BC,即DB=DC,則OD為△ABC的中位線,所以OD∥AC,而DE⊥AC,則OD⊥DE,然后根據(jù)切線的判定方法即可得到結(jié)論;(2)由∠DAC=∠DAB,根據(jù)等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可計算出AD=8,在Rt△A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論