人教版九年級(jí)數(shù)學(xué)下冊(cè)《反比例函數(shù)(第1課時(shí))》示范教學(xué)課件_第1頁(yè)
人教版九年級(jí)數(shù)學(xué)下冊(cè)《反比例函數(shù)(第1課時(shí))》示范教學(xué)課件_第2頁(yè)
人教版九年級(jí)數(shù)學(xué)下冊(cè)《反比例函數(shù)(第1課時(shí))》示范教學(xué)課件_第3頁(yè)
人教版九年級(jí)數(shù)學(xué)下冊(cè)《反比例函數(shù)(第1課時(shí))》示范教學(xué)課件_第4頁(yè)
人教版九年級(jí)數(shù)學(xué)下冊(cè)《反比例函數(shù)(第1課時(shí))》示范教學(xué)課件_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

反比例函數(shù)

(第1課時(shí))人教版九年級(jí)數(shù)學(xué)下冊(cè)

我們已經(jīng)學(xué)習(xí)過(guò)的函數(shù)有哪些?(1)一次函數(shù):一般地,形如

y=kx+b(k,b是常數(shù),k≠0)的函數(shù),叫做一次函數(shù).當(dāng)

b=0

時(shí),y=kx+b

y=kx,所以說(shuō)正比例函數(shù)是一種特殊的一次函數(shù).

我們已經(jīng)學(xué)習(xí)過(guò)的函數(shù)有哪些?一般地,形如

y=ax2+bx+c(a,b,c

是常數(shù),a≠0)的函數(shù),叫做二次函數(shù).其中,x

是自變量,a,b,c

分別是函數(shù)解析式的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng).(2)二次函數(shù):

下列問(wèn)題中,變量間具有函數(shù)關(guān)系嗎?如果有,請(qǐng)寫(xiě)出它們的解析式.

(1)京滬線(xiàn)鐵路全程為

1

463

km,某次列車(chē)的平均速度

v(單位:km/h)隨此次列車(chē)的全程運(yùn)行時(shí)間

t(單位:h)的變化而變化;

(1)根據(jù)“路程=速度×?xí)r間”,得

(2)某住宅小區(qū)要種植一塊面積為

1

000

m2

的矩形草坪,草坪的長(zhǎng)

y(單位:m)隨寬

x(單位:m)的變化而變化;(2)根據(jù)“矩形面積=長(zhǎng)×寬”,得

下列問(wèn)題中,變量間具有函數(shù)關(guān)系嗎?如果有,請(qǐng)寫(xiě)出它們的解析式.

(3)已知北京市的總面積為

1.64×104

km2,人均占有面積

S(單位:km2/人)隨全市總?cè)丝?/p>

n(單位:人)的變化而變化.(3)根據(jù)“總面積=人均占有面積×總?cè)丝凇?,得?/p>

下列問(wèn)題中,變量間具有函數(shù)關(guān)系嗎?如果有,請(qǐng)寫(xiě)出它們的解析式.

觀察這三個(gè)解析式,它們有什么共同特點(diǎn)?

.都具有的形式,其中k

是非零常數(shù).反比例函數(shù)的概念

一般地,形如

(k為常數(shù),k≠0)的函數(shù),叫做反比例函數(shù).其中

x

是自變量,y

是函數(shù).

下列函數(shù)是不是反比例函數(shù)?若是,請(qǐng)指出系數(shù)

k的值.解:

是反比例函數(shù),可變形為,其中系數(shù)k=3;

不是反比例函數(shù),是一次函數(shù);

,

,

,

,

是反比例函數(shù),可變形為,其中系數(shù)k=

下列函數(shù)是不是反比例函數(shù)?若是,請(qǐng)指出系數(shù)

k的值.

不是反比例函數(shù).解:

xy=5是反比例函數(shù),可變形為,其中系數(shù)k=5;

,

,

.反比例函數(shù)解析式的三種形式

,

,xy=k.(k為常數(shù),k≠0)在反比例函數(shù)

中,自變量x的取值范圍是x≠0,為什么?

在反比例函數(shù)解析式

中,自變量x是分式的分母,因?yàn)楫?dāng)x=0時(shí),分式?jīng)]有意義,所以反比例函數(shù)的自變量x的取值范圍是x≠0,即x

的取值范圍是不等于0

的一切實(shí)數(shù).在反比例函數(shù)解析式

中,系數(shù)k≠0,為什么?在反比例函數(shù)解析式

中,

x,y

成反比例,無(wú)論變量

x,y

怎樣變化,k

的值始終等于

x

y

的乘積.若

k=0,則

成立,為常數(shù)函數(shù),失去了反比例函數(shù)的意義,所以系數(shù)

k≠0.例1

已知反比例函數(shù)

,求

(m-2)2

022

的值.

解:因?yàn)?/p>

是反比例函數(shù),所以

m2-2=-1,且

m+1≠0,解得

m=1.當(dāng)

m=1

時(shí),(m-2)2

022=(1-2)2

022=(-1)2

022=1.

注意:利用反比例函數(shù)的概念求字母的值時(shí),既要考慮自變量的次數(shù),又要注意比例系數(shù).本題易忽略

m+1≠0

這一隱含條件.

例2

已知

y

x

的反比例函數(shù),并且當(dāng)

x=2

時(shí),y=6.(1)寫(xiě)出

y

關(guān)于

x

的函數(shù)解析式;(2)當(dāng)

x=4

時(shí),求

y

的值.

分析:因?yàn)?/p>

y

x

的反比例函數(shù),所以設(shè)

.把

x=2,

y=6

代入上式,就可求出常數(shù)

k

的值.

例2

已知

y

x

的反比例函數(shù),并且當(dāng)

x=2

時(shí),y=6.(1)寫(xiě)出

y

關(guān)于

x

的函數(shù)解析式;(2)當(dāng)

x=4

時(shí),求

y

的值.

解:(1)設(shè)

.因?yàn)楫?dāng)

x=2

時(shí),y=6,所以有

解得

k=12.因此

.(2)把

x=4

代入

,得

.(3)解:解方程,求出

k

的值.(4)寫(xiě):將求出的

k

的值代入所設(shè)解析式中,即得到所求反比例函數(shù)的解析式.(1)設(shè):設(shè)反比例函數(shù)的解析式為

(k≠0).(2)列:把已知

x

y

的一對(duì)對(duì)應(yīng)值同時(shí)代入

(k≠0)中,得到關(guān)于

k

的方程.

用待定系數(shù)法求反比例函數(shù)解析式的一般步驟:

例3

已知

y=y(tǒng)1+y2,y1

與(x-1)成正比例,y2

與(x+1)成反比例,當(dāng)

x=0

時(shí),y=-3,當(dāng)

x=1

時(shí),y=-1.求

y

關(guān)于

x

的解析式.

解:因?yàn)閥1

與(x-1)成正比例,y2

與(x+1)成反比例,所以設(shè)y1=k1(x-1)(k1≠0),

(k2≠0),

所以y=y(tǒng)1+y2=k1(x-1)+.把

x=0,y=-3和x=1,y=-1代入y=k1(x-1)+,得解得所以.反比例關(guān)系與反比例函數(shù)的區(qū)別和聯(lián)系:(1)如果

ab=k(k為常數(shù),k≠0),則

a

b

這兩個(gè)量成反比例關(guān)系,這里的

a,b

既可以代表單項(xiàng)式,也可以代表多項(xiàng)式.例如:若

y-3

x+1

成反比例,則

(k≠0);若

y

x3

成反比例,則

(k≠0).反比例關(guān)系與反比例函數(shù)的區(qū)別和聯(lián)系:(2)反比

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論