空氣動力學(xué)仿真技術(shù):大渦模擬(LES):LES網(wǎng)格生成技術(shù)_第1頁
空氣動力學(xué)仿真技術(shù):大渦模擬(LES):LES網(wǎng)格生成技術(shù)_第2頁
空氣動力學(xué)仿真技術(shù):大渦模擬(LES):LES網(wǎng)格生成技術(shù)_第3頁
空氣動力學(xué)仿真技術(shù):大渦模擬(LES):LES網(wǎng)格生成技術(shù)_第4頁
空氣動力學(xué)仿真技術(shù):大渦模擬(LES):LES網(wǎng)格生成技術(shù)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

空氣動力學(xué)仿真技術(shù):大渦模擬(LES):LES網(wǎng)格生成技術(shù)1空氣動力學(xué)仿真技術(shù):大渦模擬(LES):LES網(wǎng)格生成技術(shù)1.1緒論1.1.1空氣動力學(xué)仿真技術(shù)簡介空氣動力學(xué)仿真技術(shù)是利用計(jì)算機(jī)模擬流體動力學(xué)原理,對空氣流動及其與物體相互作用進(jìn)行數(shù)值分析的一種方法。它廣泛應(yīng)用于航空航天、汽車工業(yè)、風(fēng)能工程等領(lǐng)域,幫助工程師預(yù)測和優(yōu)化設(shè)計(jì)的空氣動力學(xué)性能。仿真技術(shù)的核心是數(shù)值求解流體動力學(xué)方程,如納維-斯托克斯方程,通過離散化處理,將連續(xù)的流場問題轉(zhuǎn)化為離散的網(wǎng)格節(jié)點(diǎn)上的問題,從而在計(jì)算機(jī)上進(jìn)行求解。1.1.2大渦模擬(LES)概述大渦模擬(LargeEddySimulation,LES)是一種用于模擬湍流的高級數(shù)值方法。與傳統(tǒng)的雷諾平均納維-斯托克斯(RANS)方法不同,LES直接模擬大尺度渦流,而將小尺度渦流的影響通過亞網(wǎng)格模型來近似。這種方法能夠更準(zhǔn)確地捕捉湍流的動態(tài)特性,尤其是在高雷諾數(shù)和復(fù)雜幾何形狀的流動中。LES的關(guān)鍵在于選擇合適的亞網(wǎng)格模型和網(wǎng)格分辨率,以平衡計(jì)算精度和效率。1.1.3LES網(wǎng)格生成技術(shù)的重要性LES網(wǎng)格生成技術(shù)對于確保LES模擬的準(zhǔn)確性和效率至關(guān)重要。網(wǎng)格不僅需要覆蓋整個流場,而且必須足夠精細(xì)以捕捉大尺度渦流的細(xì)節(jié),同時在計(jì)算資源有限的情況下,避免過度細(xì)化導(dǎo)致的計(jì)算成本增加。因此,網(wǎng)格生成需要考慮流體動力學(xué)特性、幾何復(fù)雜度、計(jì)算資源和時間成本。合理的網(wǎng)格設(shè)計(jì)可以顯著提高LES模擬的精度和效率,是LES成功應(yīng)用的關(guān)鍵因素之一。1.2網(wǎng)格生成技術(shù)1.2.1網(wǎng)格類型LES中常用的網(wǎng)格類型包括:-結(jié)構(gòu)網(wǎng)格:網(wǎng)格節(jié)點(diǎn)在空間中規(guī)則排列,適用于簡單幾何形狀。-非結(jié)構(gòu)網(wǎng)格:網(wǎng)格節(jié)點(diǎn)在空間中不規(guī)則排列,適用于復(fù)雜幾何形狀。-自適應(yīng)網(wǎng)格:根據(jù)流場特性動態(tài)調(diào)整網(wǎng)格分辨率,提高計(jì)算效率。1.2.2網(wǎng)格生成算法網(wǎng)格生成算法是創(chuàng)建LES網(wǎng)格的關(guān)鍵步驟。以下是一個使用Python和OpenFOAM進(jìn)行非結(jié)構(gòu)網(wǎng)格生成的示例:#導(dǎo)入必要的庫

importpyFoam

#定義幾何形狀

geometry={

"type":"block",

"size":[10,10,10],

"nCells":[100,100,100]

}

#創(chuàng)建網(wǎng)格

mesh=pyFoam.runDictionary.ParsedParameterDict(geometry)

blockMeshDict=pyFoam.Basics.BlockMeshDict.BlockMeshDict()

blockMeshDict.setMesh(mesh)

#寫入網(wǎng)格定義文件

blockMeshDict.writeFile("blockMeshDict")

#調(diào)用OpenFOAM的blockMesh工具生成網(wǎng)格

pyFoam.runApp.runApplication("blockMesh")1.2.3網(wǎng)格質(zhì)量檢查生成網(wǎng)格后,必須檢查網(wǎng)格質(zhì)量,確保網(wǎng)格適合LES模擬。OpenFOAM提供了多種工具來檢查網(wǎng)格質(zhì)量,例如checkMesh命令。以下是一個使用OpenFOAM檢查網(wǎng)格質(zhì)量的示例:#運(yùn)行checkMesh命令

checkMesh

#輸出示例

/*

Meshstats

==========

Points:1000000

Faces:6000000

Internalfaces:5000000

Cells:1000000

Boundarypatches:1

Pointzones:0

Facezones:0

Cellzones:0

Checkingtopology...

Checkingpatchtopologyforpointconsistency

Checkingpatchtopologyforfaceconsistency

Checkingpatchtopologyforedgeconsistency

Checkingpatchtopologyforfaceandpointconsistency(topological)

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

Checkingforduplicatefaces

Checkingforduplicateedges

Checkingforduplicatepoints

#空氣動力學(xué)仿真技術(shù):大渦模擬(LES):LES網(wǎng)格生成技術(shù)

##LES網(wǎng)格基礎(chǔ)

###網(wǎng)格類型與特性

在大渦模擬(LES)中,網(wǎng)格的選擇至關(guān)重要,它直接影響到模擬的準(zhǔn)確性和計(jì)算效率。LES網(wǎng)格通常分為三類:

1.**結(jié)構(gòu)化網(wǎng)格**:網(wǎng)格單元在空間上規(guī)則排列,如矩形網(wǎng)格。這種網(wǎng)格易于生成,但在復(fù)雜幾何形狀的模擬中可能不夠靈活。

2.**非結(jié)構(gòu)化網(wǎng)格**:網(wǎng)格單元在空間上不規(guī)則排列,適用于復(fù)雜幾何形狀的模擬。生成較為復(fù)雜,但能更好地適應(yīng)流體邊界層。

3.**混合網(wǎng)格**:結(jié)合結(jié)構(gòu)化和非結(jié)構(gòu)化網(wǎng)格的優(yōu)點(diǎn),通常在遠(yuǎn)離物體的區(qū)域使用結(jié)構(gòu)化網(wǎng)格,在物體附近使用非結(jié)構(gòu)化網(wǎng)格。

####示例:生成簡單的結(jié)構(gòu)化網(wǎng)格

```python

importnumpyasnp

#定義網(wǎng)格尺寸

nx,ny,nz=100,100,100

#生成網(wǎng)格

x=np.linspace(0,1,nx)

y=np.linspace(0,1,ny)

z=np.linspace(0,1,nz)

#創(chuàng)建三維網(wǎng)格

X,Y,Z=np.meshgrid(x,y,z)

#打印網(wǎng)格信息

print("GridShape:",X.shape)1.2.4網(wǎng)格質(zhì)量標(biāo)準(zhǔn)LES網(wǎng)格的質(zhì)量直接影響模擬結(jié)果的可靠性。主要的質(zhì)量標(biāo)準(zhǔn)包括:網(wǎng)格正交性:網(wǎng)格單元的邊盡可能正交,減少數(shù)值擴(kuò)散。網(wǎng)格扭曲度:網(wǎng)格單元不應(yīng)過度扭曲,以避免數(shù)值不穩(wěn)定。網(wǎng)格分辨率:在湍流結(jié)構(gòu)活躍的區(qū)域,網(wǎng)格應(yīng)足夠細(xì),以捕捉小尺度渦流。1.2.4.1示例:檢查網(wǎng)格正交性#假設(shè)我們有網(wǎng)格節(jié)點(diǎn)坐標(biāo)

nodes=np.array([[0,0,0],[1,0,0],[1,1,0],[0,1,0]])

#計(jì)算網(wǎng)格單元的邊向量

edge1=nodes[1]-nodes[0]

edge2=nodes[2]-nodes[1]

edge3=nodes[3]-nodes[2]

edge4=nodes[0]-nodes[3]

#計(jì)算邊向量之間的點(diǎn)積

dot_product1=np.dot(edge1,edge2)

dot_product2=np.dot(edge3,edge4)

#計(jì)算正交性

orthogonality1=dot_product1/(np.linalg.norm(edge1)*np.linalg.norm(edge2))

orthogonality2=dot_product2/(np.linalg.norm(edge3)*np.linalg.norm(edge4))

#打印正交性

print("Orthogonalityofedge1andedge2:",orthogonality1)

print("Orthogonalityofedge3andedge4:",orthogonality2)1.2.5網(wǎng)格適應(yīng)性與分辨率LES網(wǎng)格的適應(yīng)性是指網(wǎng)格能夠根據(jù)流場的特性動態(tài)調(diào)整其分辨率。在湍流強(qiáng)度高的區(qū)域,網(wǎng)格應(yīng)更密集;而在湍流強(qiáng)度低的區(qū)域,網(wǎng)格可以較稀疏,以節(jié)省計(jì)算資源。1.2.5.1示例:基于湍流強(qiáng)度的網(wǎng)格適應(yīng)性調(diào)整importnumpyasnp

#假設(shè)我們有湍流強(qiáng)度數(shù)據(jù)

turbulence_intensity=np.random.rand(100,100,100)

#定義網(wǎng)格分辨率調(diào)整函數(shù)

defadjust_resolution(intensity,threshold=0.5):

#如果湍流強(qiáng)度大于閾值,增加分辨率

high_res_area=intensity>threshold

#否則,減少分辨率

low_res_area=intensity<=threshold

#返回調(diào)整后的區(qū)域

returnhigh_res_area,low_res_area

#調(diào)整網(wǎng)格分辨率

high_res,low_res=adjust_resolution(turbulence_intensity)

#打印調(diào)整后的區(qū)域信息

print("HighResolutionArea:",np.sum(high_res))

print("LowResolutionArea:",np.sum(low_res))以上示例展示了如何基于湍流強(qiáng)度數(shù)據(jù)動態(tài)調(diào)整網(wǎng)格分辨率,通過設(shè)置不同的閾值,可以控制高分辨率和低分辨率區(qū)域的大小,從而優(yōu)化LES模擬的計(jì)算效率和準(zhǔn)確性。2空氣動力學(xué)仿真技術(shù):大渦模擬(LES):LES網(wǎng)格生成技術(shù)2.1LES網(wǎng)格生成方法2.1.1結(jié)構(gòu)化網(wǎng)格生成結(jié)構(gòu)化網(wǎng)格生成是大渦模擬(LES)中常用的一種網(wǎng)格劃分技術(shù),它通過定義網(wǎng)格節(jié)點(diǎn)在空間中的有規(guī)則排列,形成矩形或六面體網(wǎng)格。這種網(wǎng)格類型在處理具有簡單幾何形狀的流體域時非常有效,因?yàn)樗梢蕴峁┚鶆虻木W(wǎng)格分布,便于數(shù)值計(jì)算的穩(wěn)定性和準(zhǔn)確性。2.1.1.1原理結(jié)構(gòu)化網(wǎng)格的生成基于數(shù)學(xué)函數(shù),這些函數(shù)描述了網(wǎng)格節(jié)點(diǎn)在空間中的分布。最常見的是使用代數(shù)或差分方程來定義網(wǎng)格節(jié)點(diǎn)的位置。例如,對于一個二維流體域,可以使用以下代數(shù)函數(shù)來生成結(jié)構(gòu)化網(wǎng)格:xy其中,a,b,c,2.1.1.2示例假設(shè)我們有一個二維流體域,其邊界坐標(biāo)為a=0,importnumpyasnp

#定義流體域邊界坐標(biāo)

a,b,c,d,e,f=0,1,0,0,1,1

#定義網(wǎng)格節(jié)點(diǎn)數(shù)

N_x,N_y=10,10

#生成網(wǎng)格節(jié)點(diǎn)

x=np.linspace(a,b,N_x)

y=np.linspace(d,e,N_y)

X,Y=np.meshgrid(x,y)

#打印網(wǎng)格節(jié)點(diǎn)

print("GridnodesinXdirection:")

print(X)

print("GridnodesinYdirection:")

print(Y)這段代碼首先定義了流體域的邊界坐標(biāo)和網(wǎng)格節(jié)點(diǎn)數(shù),然后使用numpy庫的linspace函數(shù)生成了x和y方向上的節(jié)點(diǎn)坐標(biāo)。最后,meshgrid函數(shù)被用來創(chuàng)建一個二維網(wǎng)格,其中X和Y分別表示網(wǎng)格節(jié)點(diǎn)在x和y方向上的坐標(biāo)。2.1.2非結(jié)構(gòu)化網(wǎng)格生成非結(jié)構(gòu)化網(wǎng)格生成技術(shù)在處理復(fù)雜幾何形狀時更為靈活,它允許網(wǎng)格節(jié)點(diǎn)在空間中自由分布,形成三角形或四面體網(wǎng)格。這種網(wǎng)格類型可以更好地適應(yīng)流體域的邊界形狀,特別是在處理具有突變或不規(guī)則形狀的物體時。2.1.2.1原理非結(jié)構(gòu)化網(wǎng)格的生成通常依賴于三角剖分或四面體剖分算法,如Delaunay三角剖分。這些算法確保了網(wǎng)格的質(zhì)量,避免了過長或過短的邊,以及過銳或過鈍的角,從而提高了數(shù)值計(jì)算的穩(wěn)定性和準(zhǔn)確性。2.1.2.2示例使用scipy庫中的delaunay模塊,我們可以生成一個二維非結(jié)構(gòu)化網(wǎng)格。假設(shè)我們有以下一組邊界點(diǎn):points=np.array([(0,0),(1,0),(1,1),(0,1),(0.5,0.5)])以下是一個生成非結(jié)構(gòu)化網(wǎng)格的示例代碼:importnumpyasnp

fromscipy.spatialimportDelaunay

importmatplotlib.pyplotasplt

#定義邊界點(diǎn)

points=np.array([(0,0),(1,0),(1,1),(0,1),(0.5,0.5)])

#生成Delaunay三角剖分

tri=Delaunay(points)

#繪制網(wǎng)格

plt.triplot(points[:,0],points[:,1],tri.simplices)

plt.plot(points[:,0],points[:,1],'o')

#顯示圖形

plt.show()這段代碼首先定義了一組邊界點(diǎn),然后使用Delaunay函數(shù)生成了三角剖分。triplot函數(shù)被用來繪制網(wǎng)格,而plot函數(shù)則用于顯示邊界點(diǎn)。2.1.3混合網(wǎng)格技術(shù)混合網(wǎng)格技術(shù)結(jié)合了結(jié)構(gòu)化和非結(jié)構(gòu)化網(wǎng)格的優(yōu)點(diǎn),允許在流體域的不同部分使用不同類型的網(wǎng)格。例如,在流體域的邊界附近,可以使用非結(jié)構(gòu)化網(wǎng)格來更好地適應(yīng)邊界形狀;而在流體域的內(nèi)部,可以使用結(jié)構(gòu)化網(wǎng)格來提高計(jì)算效率。2.1.3.1原理混合網(wǎng)格的生成通常涉及多個步驟,首先生成結(jié)構(gòu)化網(wǎng)格,然后在需要的地方使用非結(jié)構(gòu)化網(wǎng)格進(jìn)行細(xì)化。這可以通過使用網(wǎng)格生成軟件或編程庫來實(shí)現(xiàn),如OpenFOAM或Gmsh。2.1.3.2示例在OpenFOAM中,混合網(wǎng)格可以通過定義邊界層和內(nèi)部結(jié)構(gòu)化網(wǎng)格來生成。以下是一個簡單的示例,展示了如何在OpenFOAM中定義一個混合網(wǎng)格:定義邊界層:在constant/polyMesh/boundary文件中,定義邊界層的網(wǎng)格類型為patch,并指定邊界層的厚度和層數(shù)。定義內(nèi)部結(jié)構(gòu)化網(wǎng)格:在system/blockMeshDict文件中,定義內(nèi)部網(wǎng)格的結(jié)構(gòu)化屬性,如網(wǎng)格尺寸和方向。生成混合網(wǎng)格:運(yùn)行blockMesh和snappyHexMesh命令,生成混合網(wǎng)格。由于OpenFOAM的配置文件和命令較為復(fù)雜,這里不提供具體的代碼示例,但上述步驟提供了一個生成混合網(wǎng)格的基本框架。在大渦模擬(LES)中,網(wǎng)格生成技術(shù)的選擇和優(yōu)化對于提高計(jì)算效率和準(zhǔn)確性至關(guān)重要。結(jié)構(gòu)化網(wǎng)格、非結(jié)構(gòu)化網(wǎng)格和混合網(wǎng)格技術(shù)各有優(yōu)劣,應(yīng)根據(jù)具體問題的幾何形狀和流體特性來選擇最合適的網(wǎng)格類型。3空氣動力學(xué)仿真技術(shù):大渦模擬(LES):LES網(wǎng)格優(yōu)化技術(shù)3.1網(wǎng)格細(xì)化策略在大渦模擬(LES)中,網(wǎng)格細(xì)化策略是關(guān)鍵的一步,它直接影響到模擬的準(zhǔn)確性和計(jì)算效率。LES網(wǎng)格優(yōu)化技術(shù)中的網(wǎng)格細(xì)化策略通常關(guān)注于在流體動力學(xué)中重要的區(qū)域增加網(wǎng)格密度,以捕捉更小尺度的渦流結(jié)構(gòu)。這可以通過以下幾種方法實(shí)現(xiàn):基于特征長度的細(xì)化:在高梯度區(qū)域,如邊界層、剪切層或渦旋核心,使用更小的網(wǎng)格尺寸。這可以通過計(jì)算局部特征長度(如渦旋尺度)來自動確定?;谀芰孔V的細(xì)化:根據(jù)LES能量譜分析,確定需要細(xì)化的區(qū)域。能量譜顯示了不同尺度渦流的能量分布,高能量區(qū)域需要更精細(xì)的網(wǎng)格?;跁r間步長的細(xì)化:在時間步長受限的區(qū)域(如高頻率渦流區(qū)域)進(jìn)行網(wǎng)格細(xì)化,以確保時間積分的穩(wěn)定性。3.1.1示例:基于特征長度的網(wǎng)格細(xì)化假設(shè)我們有一個簡單的二維LES模型,需要在邊界層區(qū)域進(jìn)行網(wǎng)格細(xì)化。我們可以使用Python和NumPy庫來計(jì)算邊界層的特征長度,并據(jù)此調(diào)整網(wǎng)格密度。importnumpyasnp

#假設(shè)的流場數(shù)據(jù)

u=np.random.rand(100,100)#x方向速度

v=np.random.rand(100,100)#y方向速度

x=np.linspace(0,1,100)

y=np.linspace(0,1,100)

X,Y=np.meshgrid(x,y)

#計(jì)算速度梯度

du_dx=np.gradient(u,x)

du_dy=np.gradient(u,y)

dv_dx=np.gradient(v,x)

dv_dy=np.gradient(v,y)

#計(jì)算特征長度

L=1/np.sqrt((du_dx**2+du_dy**2+dv_dx**2+dv_dy**2))

#網(wǎng)格細(xì)化

#假設(shè)在L小于某個閾值的區(qū)域進(jìn)行細(xì)化

threshold=0.1

fine_grid=L<threshold

#輸出細(xì)化區(qū)域的網(wǎng)格信息

print("細(xì)化區(qū)域的網(wǎng)格信息:")

print(fine_grid)3.2網(wǎng)格自適應(yīng)算法網(wǎng)格自適應(yīng)算法允許在模擬過程中動態(tài)調(diào)整網(wǎng)格密度,以響應(yīng)流場的變化。這在LES中尤為重要,因?yàn)闇u流的尺度和強(qiáng)度會隨時間和空間變化。自適應(yīng)算法可以基于流場的局部特征,如渦旋強(qiáng)度、速度梯度或能量密度,來調(diào)整網(wǎng)格。3.2.1示例:基于渦旋強(qiáng)度的網(wǎng)格自適應(yīng)在Python中,我們可以使用SciPy庫來實(shí)現(xiàn)基于渦旋強(qiáng)度的網(wǎng)格自適應(yīng)算法。以下是一個簡單的示例,展示了如何根據(jù)渦旋強(qiáng)度的閾值動態(tài)調(diào)整網(wǎng)格。fromscipy.ndimageimportgaussian_filter

#假設(shè)的渦旋強(qiáng)度數(shù)據(jù)

vorticity=np.random.rand(100,100)

#應(yīng)用高斯濾波器平滑渦旋強(qiáng)度數(shù)據(jù)

vorticity_smooth=gaussian_filter(vorticity,sigma=2)

#確定需要細(xì)化的區(qū)域

adaptive_grid=vorticity_smooth>0.5

#輸出自適應(yīng)網(wǎng)格信息

print("自適應(yīng)網(wǎng)格信息:")

print(adaptive_grid)3.3多尺度網(wǎng)格處理多尺度網(wǎng)格處理是LES網(wǎng)格優(yōu)化技術(shù)中的另一個重要方面。它涉及到在不同的尺度上使用不同密度的網(wǎng)格,以平衡計(jì)算精度和效率。例如,可以使用粗網(wǎng)格來模擬大尺度渦流,而使用細(xì)網(wǎng)格來捕捉小尺度渦流的細(xì)節(jié)。3.3.1示例:多尺度網(wǎng)格處理在多尺度網(wǎng)格處理中,我們可能需要在Python中實(shí)現(xiàn)一個函數(shù),該函數(shù)根據(jù)流場的尺度自動選擇網(wǎng)格密度。以下是一個簡化的示例,展示了如何根據(jù)渦旋尺度選擇不同的網(wǎng)格密度。defmultiscale_grid(vorticity,min_scale,max_scale):

"""

根據(jù)渦旋尺度選擇網(wǎng)格密度。

參數(shù):

vorticity:numpy.ndarray

渦旋強(qiáng)度數(shù)據(jù)。

min_scale:float

最小渦旋尺度,對應(yīng)于最細(xì)網(wǎng)格。

max_scale:float

最大渦旋尺度,對應(yīng)于最粗網(wǎng)格。

返回:

grid_density:numpy.ndarray

每個網(wǎng)格點(diǎn)的密度。

"""

#計(jì)算渦旋尺度

scales=1/np.sqrt(np.gradient(vorticity)**2)

#根據(jù)渦旋尺度選擇網(wǎng)格密度

grid_density=np.where(scales<min_scale,10,1)

grid_density=np.where(scales>max_scale,1,grid_density)

returngrid_density

#使用示例

vorticity=np.random.rand(100,100)

grid_density=multiscale_grid(vorticity,0.05,0.5)

print("多尺度網(wǎng)格密度:")

print(grid_density)通過這些策略和算法,LES網(wǎng)格優(yōu)化技術(shù)能夠顯著提高空氣動力學(xué)仿真中的計(jì)算效率和準(zhǔn)確性,特別是在處理復(fù)雜流場和多尺度現(xiàn)象時。4空氣動力學(xué)仿真技術(shù):大渦模擬(LES):LES網(wǎng)格生成技術(shù)4.1LES網(wǎng)格在空氣動力學(xué)中的應(yīng)用4.1.1飛機(jī)設(shè)計(jì)中的LES網(wǎng)格應(yīng)用在飛機(jī)設(shè)計(jì)中,大渦模擬(LES)是一種高級的數(shù)值模擬技術(shù),用于預(yù)測和分析飛機(jī)周圍的湍流流動。LES網(wǎng)格的生成是確保模擬準(zhǔn)確性和效率的關(guān)鍵步驟。網(wǎng)格必須足夠精細(xì)以捕捉到流動中的小尺度渦旋,同時又要足夠稀疏以減少計(jì)算資源的需求。4.1.1.1示例:使用OpenFOAM生成LES網(wǎng)格#OpenFOAM網(wǎng)格生成腳本示例

#該腳本用于生成飛機(jī)翼型周圍的LES網(wǎng)格

#設(shè)置OpenFOAM環(huán)境

source$WM_PROJECT_DIR/bin/tools.sh

setWM

#定義幾何形狀

blockMeshDict<<EOF

(

//定義邊界

boundaries

(

wing

{

typepatch;

faces

(

(0123)

(4567)

//更多翼型表面的定義

);

}

inlet

{

typepatch;

faces

(

(891011)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論