版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河南省林州一中分校(林慮中學(xué)2024-2025學(xué)年學(xué)術(shù)聯(lián)盟高三教學(xué)質(zhì)量檢測試題考試(二)數(shù)學(xué)試題試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.小王因上班繁忙,來不及做午飯,所以叫了外賣.假設(shè)小王和外賣小哥都在12:00~12:10之間隨機(jī)到達(dá)小王所居住的樓下,則小王在樓下等候外賣小哥的時間不超過5分鐘的概率是()A. B. C. D.2.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-23.函數(shù)(且)的圖象可能為()A. B. C. D.4.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關(guān)于對稱,則的值為()A.2 B.3 C.4 D.5.設(shè)復(fù)數(shù)滿足為虛數(shù)單位),則()A. B. C. D.6.設(shè)點是橢圓上的一點,是橢圓的兩個焦點,若,則()A. B. C. D.7.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.8.已知向量,,則與共線的單位向量為()A. B.C.或 D.或9.如圖,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.10.已知銳角滿足則()A. B. C. D.11.拋物線的焦點為F,點為該拋物線上的動點,若點,則的最小值為()A. B. C. D.12.復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知,則_____.14.已知點是橢圓上一點,過點的一條直線與圓相交于兩點,若存在點,使得,則橢圓的離心率取值范圍為_________.15.已知實數(shù),滿足,則的最大值為______.16.已知一組數(shù)據(jù),1,0,,的方差為10,則________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在斜三棱柱中,側(cè)面與側(cè)面都是菱形,,.(Ⅰ)求證:;(Ⅱ)若,求平面與平面所成的銳二面角的余弦值.18.(12分)某百貨商店今年春節(jié)期間舉行促銷活動,規(guī)定消費達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該商店經(jīng)理對春節(jié)前天參加抽獎活動的人數(shù)進(jìn)行統(tǒng)計,表示第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:123456758810141517(1)經(jīng)過進(jìn)一步統(tǒng)計分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(2)該商店規(guī)定:若抽中“一等獎”,可領(lǐng)取600元購物券;抽中“二等獎”可領(lǐng)取300元購物券;抽中“謝謝惠顧”,則沒有購物券.已知一次抽獎活動獲得“一等獎”的概率為,獲得“二等獎”的概率為.現(xiàn)有張、王兩位先生參與了本次活動,且他們是否中獎相互獨立,求此二人所獲購物券總金額的分布列及數(shù)學(xué)期望.參考公式:,,,.19.(12分)已知函數(shù),,若存在實數(shù)使成立,求實數(shù)的取值范圍.20.(12分)2018年9月,臺風(fēng)“山竹”在我國多個省市登陸,造成直接經(jīng)濟(jì)損失達(dá)52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風(fēng)中造成的直接經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);(2)臺風(fēng)后該青年志愿者與當(dāng)?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機(jī)抽取2戶進(jìn)行重點幫扶,設(shè)抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學(xué)期望.21.(12分)已知直線:(為參數(shù)),曲線(為參數(shù)).(1)設(shè)與相交于,兩點,求;(2)若把曲線上各點的橫坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線,設(shè)點是曲線上的一個動點,求它到直線距離的最小值.22.(10分)某景點上山共有級臺階,寓意長長久久.甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,若甲每步上一個臺階的概率為,每步上兩個臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個臺階記分,一步走兩個臺階記分,記甲登上第個臺階的概率為,其中,且.(1)若甲走步時所得分?jǐn)?shù)為,求的分布列和數(shù)學(xué)期望;(2)證明:數(shù)列是等比數(shù)列;(3)求甲在登山過程中,恰好登上第級臺階的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
設(shè)出兩人到達(dá)小王的時間,根據(jù)題意列出不等式組,利用幾何概型計算公式進(jìn)行求解即可.【詳解】設(shè)小王和外賣小哥到達(dá)小王所居住的樓下的時間分別為,以12:00點為開始算起,則有,在平面直角坐標(biāo)系內(nèi),如圖所示:圖中陰影部分表示該不等式組的所表示的平面區(qū)域,所以小王在樓下等候外賣小哥的時間不超過5分鐘的概率為:.故選:C本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區(qū)域,考查了數(shù)學(xué)運算能力.2.B【解析】
由函數(shù)解析式中含絕對值,所以去絕對值并畫出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當(dāng)時,有最大值,當(dāng)時,有最小值.故選:B.本題考查了絕對值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.3.D【解析】因為,故函數(shù)是奇函數(shù),所以排除A,B;取,則,故選D.考點:1.函數(shù)的基本性質(zhì);2.函數(shù)的圖象.4.B【解析】
因為將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,可得,結(jié)合已知,即可求得答案.【詳解】將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,又和的圖象都關(guān)于對稱,由,得,,即,又,.故選:B.本題主要考查了三角函數(shù)圖象平移和根據(jù)圖象對稱求參數(shù),解題關(guān)鍵是掌握三角函數(shù)圖象平移的解法和正弦函數(shù)圖象的特征,考查了分析能力和計算能力,屬于基礎(chǔ)題.5.B【解析】
易得,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,所以.故選:B.本題考查復(fù)數(shù)的乘法、除法運算,考查學(xué)生的基本計算能力,是一道容易題.6.B【解析】∵∵∴∵,∴∴故選B點睛:本題主要考查利用橢圓的簡單性質(zhì)及橢圓的定義.求解與橢圓性質(zhì)有關(guān)的問題時要結(jié)合圖形進(jìn)行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當(dāng)涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.7.D【解析】
集合.為自然數(shù)集,由此能求出結(jié)果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯誤.故選:D.本題考查命題真假的判斷、元素與集合的關(guān)系、集合與集合的關(guān)系等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.8.D【解析】
根據(jù)題意得,設(shè)與共線的單位向量為,利用向量共線和單位向量模為1,列式求出即可得出答案.【詳解】因為,,則,所以,設(shè)與共線的單位向量為,則,解得或所以與共線的單位向量為或.故選:D.本題考查向量的坐標(biāo)運算以及共線定理和單位向量的定義.9.D【解析】
先求出球心到四個支點所在球的小圓的距離,再加上側(cè)面三角形的高,即可求解.【詳解】設(shè)四個支點所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長為的正方形硬紙,可得圓的半徑為,利用球的性質(zhì)可得,又由到底面的距離即為側(cè)面三角形的高,其中高為,所以球心到底面的距離為.故選:D.本題主要考查了空間幾何體的結(jié)構(gòu)特征,以及球的性質(zhì)的綜合應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及推理與計算能力,屬于基礎(chǔ)題.10.C【解析】
利用代入計算即可.【詳解】由已知,,因為銳角,所以,,即.故選:C.本題考查二倍角的正弦、余弦公式的應(yīng)用,考查學(xué)生的運算能力,是一道基礎(chǔ)題.11.B【解析】
通過拋物線的定義,轉(zhuǎn)化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準(zhǔn)線方程為,,過作垂直直線于,由拋物線的定義可知,連結(jié),當(dāng)是拋物線的切線時,有最小值,則最大,即最大,就是直線的斜率最大,設(shè)在的方程為:,所以,解得:,所以,解得,所以,.故選:.本題考查拋物線的基本性質(zhì),直線與拋物線的位置關(guān)系,轉(zhuǎn)化思想的應(yīng)用,屬于基礎(chǔ)題.12.C【解析】
由復(fù)數(shù)除法求出,寫出共軛復(fù)數(shù),寫出共軛復(fù)數(shù)對應(yīng)點坐標(biāo)即得【詳解】解析:,,對應(yīng)點為,在第三象限.故選:C.本題考查復(fù)數(shù)的除法運算,共軛復(fù)數(shù)的概念,復(fù)數(shù)的幾何意義.掌握復(fù)數(shù)除法法則是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
對原方程兩邊求導(dǎo),然后令求得表達(dá)式的值.【詳解】對等式兩邊求導(dǎo),得,令,則.本小題主要考查二項式展開式,考查利用導(dǎo)數(shù)轉(zhuǎn)化已知條件,考查賦值法,屬于中檔題.14.【解析】
設(shè),設(shè)出直線AB的參數(shù)方程,利用參數(shù)的幾何意義可得,由題意得到,據(jù)此求得離心率的取值范圍.【詳解】設(shè),直線AB的參數(shù)方程為,(為參數(shù))代入圓,化簡得:,,,,存在點,使得,,即,,,,故答案為:本題主要考查了橢圓離心率取值范圍的求解,考查直線、圓與橢圓的綜合運用,考查直線參數(shù)方程的運用,屬于中檔題.15.【解析】
畫出不等式組表示的平面區(qū)域,將目標(biāo)函數(shù)理解為點與構(gòu)成直線的斜率,數(shù)形結(jié)合即可求得.【詳解】不等式組表示的平面區(qū)域如下所示:因為可以理解為點與構(gòu)成直線的斜率,數(shù)形結(jié)合可知,當(dāng)且僅當(dāng)目標(biāo)函數(shù)過點時,斜率取得最大值,故的最大值為.故答案為:.本題考查目標(biāo)函數(shù)為斜率型的規(guī)劃問題,屬基礎(chǔ)題.16.7或【解析】
依據(jù)方差公式列出方程,解出即可.【詳解】,1,0,,的平均數(shù)為,所以解得或.本題主要考查方差公式的應(yīng)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(1)取中點,連,,由等邊三角形三邊合一可知,,即證.(2)以,,為正方向建立空間直角坐標(biāo)系,由向量法可求得平面與平面所成的銳二面角的余弦值.試題解析:(Ⅰ)證明:連,,則和皆為正三角形.取中點,連,,則,,則平面,則(Ⅱ)由(Ⅰ)知,,又,所以.如圖所示,分別以,,為正方向建立空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,因為,,所以取面的法向量取,則,平面與平面所成的銳二面角的余弦值.18.(1);(2)見解析【解析】試題分析:(I)由題意可得,,則,,關(guān)于的線性回歸方程為.(II)由題意可知二人所獲購物券總金額的可能取值有、、、、元,它們所對應(yīng)的概率分別為:,,,.據(jù)此可得分布列,計算相應(yīng)的數(shù)學(xué)期望為元.試題解析:(I)依題意:,,,,,,則關(guān)于的線性回歸方程為.(II)二人所獲購物券總金額的可能取值有、、、、元,它們所對應(yīng)的概率分別為:,,,,.所以,總金額的分布列如下表:03006009001200總金額的數(shù)學(xué)期望為元.19.【解析】試題分析:先將問題“存在實數(shù)使成立”轉(zhuǎn)化為“求函數(shù)的最大值”,再借助柯西不等式求出的最大值即可獲解.試題解析:存在實數(shù)使成立,等價于的最大值大于,因為,由柯西不等式:,所以,當(dāng)且僅當(dāng)時取“”,故常數(shù)的取值范圍是.考點:柯西不等式即運用和轉(zhuǎn)化與化歸的數(shù)學(xué)思想的運用.20.(1)3360元;(2)見解析【解析】
(1)根據(jù)頻率分布直方圖計算每個農(nóng)戶的平均損失;(2)根據(jù)頻率分布直方圖計算隨機(jī)變量X的可能取值,再求X的分布列和數(shù)學(xué)期望值.【詳解】(1)記每個農(nóng)戶的平均損失為元,則;(2)由頻率分布直方圖,可得損失超過1000元的農(nóng)戶共有(0.00009+0.00003+0.00003)×2000×50=15(戶),損失超過8000元的農(nóng)戶共有0.00003×2000×50=3(戶),隨機(jī)抽取2戶,則X的可能取值為0,1,2;計算P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列為;X012P數(shù)學(xué)期望為E(X)=0×+1×+2×=.本題考查了頻率分布直方圖與離散型隨機(jī)變量的分布列與數(shù)學(xué)期望計算問題,屬于中檔題.21.(1);(2).【解析】
(1)將直線和曲線化為普通方程,聯(lián)立直線和曲線,可得交點坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年熱水循環(huán)系統(tǒng)安裝協(xié)議3篇
- 2024年租賃合同(家具)
- 2024年稅務(wù)顧問服務(wù)合同模板適用于跨國企業(yè)3篇
- 簡單java課程設(shè)計
- 混凝土樓蓋課程設(shè)計完整
- 2024年度旅游產(chǎn)品消費者分期支付合同范本3篇
- 2024-2025學(xué)年魯教新版九年級(上)化學(xué)寒假作業(yè)(七)
- 2024年度旅游項目擔(dān)保合同標(biāo)準(zhǔn)示范3篇
- 滑板車游戲課程設(shè)計
- 2024年清潔能源開發(fā)與應(yīng)用合同
- 湖南省2022-2023學(xué)年七年級上學(xué)期語文期末試卷(含答案)
- 膽結(jié)石 健康宣教
- 發(fā)運工作總結(jié)
- 共享設(shè)備行業(yè)分析
- 2024年江蘇省普通高中學(xué)業(yè)水平測試(必修試卷)物理試卷
- 個人墊資合同
- GB/T 10739-2023紙、紙板和紙漿試樣處理和試驗的標(biāo)準(zhǔn)大氣條件
- 鐵三角管理辦法(試行)
- 高考小說閱讀分類導(dǎo)練:詩化小說(知識導(dǎo)讀+強化訓(xùn)練+答案解析)
- 設(shè)立法律咨詢服務(wù)公司市場研究報告
- 合理使用抗生素
評論
0/150
提交評論