版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版高中數(shù)學(xué)必修3知識點和練習(xí)題
第一章算法初步
i.i.i算法的概念
1、算法概念:
在數(shù)學(xué)上,現(xiàn)代意義上的“算法”通常是指可以用計算機來解決的某一類問題
是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)
完成.
2.算法的特點:
(1)有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能
是無限的.
⑵確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)
果,而不應(yīng)當(dāng)是模棱兩可.
⑶順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步
驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才
能進行下一步,并且每一步都準確無誤,才能完成問題.
⑷不唯一性:求解某一個問題的解法不一定是唯一的,對于一個問題可以有
不同的算法.
⑸普遍性:很多具體的問題,都可以設(shè)計合理的算法去解決,如心算、計算
器計算都要經(jīng)過有限、事先設(shè)計好的步驟加以解決.
1.1.2程序框圖
1、程序框圖基本概念:
(一)程序構(gòu)圖的概念:程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線
及文字說明來準確、直觀地表示算法的圖形。
一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程
序框外必要文字說明。
(-)構(gòu)成程序框的圖形符號及其作用
程序框名稱功能
表示一個算法的起始和結(jié)束,是任何流程圖
起止框
\_____________?不可少的。
表示一個算法輸入和輸出的信息,可用在算
輸入、輸出框
法中任何需要輸入、輸出的位置。
賦值、計算,算法中處理數(shù)據(jù)需要的算式、
處理框公式等分別寫在不同的用以處理數(shù)據(jù)的處
理框內(nèi)。
_______________
判斷某一條件是否成立,成立時在出口處標
判斷框明“是”或“Y”;不成立時標明“否”或
“N”。
學(xué)習(xí)這部分知識的時候,要掌握各個圖形的形狀、作用及使用規(guī)則,畫程序框
圖的規(guī)則如下:
1、使用標準的圖形符號。2、框圖一般按從上到下、從左到右的方向畫。3、
除判斷框外,大多數(shù)流程圖符號只有一個進入點和一個退出點。判斷框具有超
過一個退出點的唯一符號。4、判斷框分兩大類,一類判斷框“是”與“否”
兩分支的判斷,而且有且僅有兩個結(jié)果;另一類是多分支判斷,有幾種不同的
結(jié)果。5、在圖形符號內(nèi)描述的語言要非常簡練清楚。
(三)、算法的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。
1、順序結(jié)構(gòu):順序結(jié)構(gòu)是最簡單的算法結(jié)構(gòu),語句與語句之間,框與框之間是按從上到
下的順序進行的,它是由若干個依次執(zhí)行的處理步驟組成的,它是任何一個算法都離不
開的一種基本算法結(jié)構(gòu)。
順序結(jié)構(gòu)在程序框圖中的體現(xiàn)就是用流程線將程序框自上而
下地連接起來,按順序執(zhí)行算法步驟。如在示意圖中,A框和B
框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)
行B框所指定的操作。
2、條件結(jié)構(gòu):
條件結(jié)構(gòu)是指在算法中通過對條件的判斷
根據(jù)條件是否成立而選擇不同流向的算法結(jié)構(gòu)。
條件P是否成立而選擇執(zhí)行A框或B框。無論P條件是否成立,只能執(zhí)行A
框或B框之一,不可能同時執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。
一個判斷結(jié)構(gòu)可以有多個判斷框。
3、循環(huán)結(jié)構(gòu):在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處
理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)
結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。循環(huán)結(jié)構(gòu)又稱重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細分為兩類:
(1)、一類是當(dāng)型循環(huán)結(jié)構(gòu),如下左圖所示,它的功能是當(dāng)給定的條件P成立
時,執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再
執(zhí)行A框,如此反復(fù)執(zhí)行A框,直到某一次條件P不成立為止,此時不再執(zhí)行
A框,離開循環(huán)結(jié)構(gòu)。
(2)、另一類是直到型循環(huán)結(jié)構(gòu),如下右圖所示,它的功能是先執(zhí)行,然后判
斷給定的條件P是否成立,如果P仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次
給定的條件P成立為止,此時不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。
不成立D
V
當(dāng)型循環(huán)結(jié)構(gòu)直到型循環(huán)結(jié)構(gòu)
注意:1循環(huán)結(jié)構(gòu)要在某個條件下終止循環(huán),這就需要條件結(jié)構(gòu)來判斷。因此,循環(huán)
結(jié)構(gòu)中一定包含條件結(jié)構(gòu),但不允許“死循環(huán)”。2在循環(huán)結(jié)構(gòu)中都有一個計數(shù)變量和累
加變量。計數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結(jié)果。計數(shù)變量和累加變量一
般是同步執(zhí)行的,累加一次,計數(shù)一次。
1.2.1輸入、輸出語句和賦值語句
1、輸入語句
(1)輸入語句的一般格式
圖形計算器
格式
INPUT"提示內(nèi)容”;變量INPUT”提示內(nèi)容”,變量
(2)輸入語句的作用是實現(xiàn)算法的輸入信息功能;(3)“提示內(nèi)容”提示用戶輸入什么
樣的信息,變量是指程序在運行時其值是可以變化的量;(4)輸入語句要求輸入的值只
能是具體的常數(shù),不能是函數(shù)、變量或表達式;(5)提示內(nèi)容與變量之間用分號“;”隔
開,若輸入多個變量,變量與變量之間用逗號“,”隔開。
2、輸出語句
(1)輸出語句的一般格式
圖形計算器
格式
PRINT"提示內(nèi)容”;表達式Disp”提示內(nèi)容”,變量
(2)輸出語句的作用是實現(xiàn)算法的輸出結(jié)果功能;(3)“提示內(nèi)容”提示用戶輸入什么
樣的信息,表達式是指程序要輸出的數(shù)據(jù);(4)輸出語句可以輸出常量、變量或表達式
的值以及字符。
3、賦值語句
(1)賦值語句的一般格式圖形計算器
格式表達式f變量
變量=表達式
(2)賦值語句的作用是將表達式所代表的值賦給變量;(3)賦值語句中的“=”稱作賦
值號,與數(shù)學(xué)中的等號的意義是不同的。賦值號的左右兩邊不能對換,它將賦值號右邊
的表達式的值賦給賦值號左邊的變量;(4)賦值語句左邊只能是變量名字,而不是表達
式,右邊表達式可以是一個數(shù)據(jù)、常量或算式;(5)對于一個變量可以多次賦值。
注意:①賦值號左邊只能是變量名字,而不能是表達式。如:2=X是錯誤的。②賦值號
左右不能對換。如“A=B”“B=A”的含義運行結(jié)果是不同的。③不能利用貝武值語句進
行代數(shù)式的演算。(如化簡、因式分解、解方程等)④賦值號“=”與數(shù)學(xué)中的等號意義
不同。
1.2.2條件語句
1、條件語句的一般格式有兩種:(1)IF—THEN—ELSE語句;(2)IF—THEN語句。2、
IF—THEN—ELSE語句
IF—THEN—ELSE語句的一般格式為圖1,對應(yīng)的程序框圖為圖2。
IF條件THEN
語句1
ELSE
語句2語句]語句2
ENDIF
圖1圖2
分析:在IF—THEN—ELSE語句中,“條件”表示判斷的條件,“語句1”表示滿足條件
時執(zhí)行的操作內(nèi)容;“語句2”表示不滿足條件時執(zhí)行的操作內(nèi)容;ENDIF表示條件語
句的結(jié)束。計算機在執(zhí)行時,首先對IF后的條件進行判斷,如果條件符合,則執(zhí)行THEN
后面的語句1;若條件不符合,則執(zhí)行ELSE后面的語句2。
時首先對IF后的條件進行判斷,如果條件符合就執(zhí)行THEN后邊的語句,若條件不符合
則直接結(jié)束該條件語句,轉(zhuǎn)而執(zhí)行其它語句。
1.2.3循環(huán)語句
循環(huán)結(jié)構(gòu)是由循環(huán)語句來實現(xiàn)的。對應(yīng)于程序框圖中的兩種循環(huán)結(jié)構(gòu),一般程序設(shè)
計語言中也有當(dāng)型(WHILE型)和直到型(UNTIL型)兩種語句結(jié)構(gòu)。即WHILE語句和UNTIL
語句。
1、WHILE語句
(1)WHILE語句的一般格式是對應(yīng)的程序框圖是
WHILE條件
循環(huán)體
WEND
(2)當(dāng)計算機遇到WHILE語句時,先判斷條件的真假,如果條件符合,就執(zhí)行WHILE
與WEND之間的循環(huán)體;然后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這
個過程反復(fù)進行,直到某一次條件不符合為止。這時,計算機將不執(zhí)行循環(huán)體,直接跳
到WEND語句后,接著執(zhí)行WEND之后的語句。因此,當(dāng)型循環(huán)有時也稱為“前測試
型”循環(huán)。
2、UNTIL語句
(1)UNTIL語句的一般格式是對應(yīng)的程序框圖是
DO
循環(huán)體
LOOPUNTIL條件
(2)直到型循環(huán)又稱為“后測試型”循環(huán),從UNTIL
句時,先執(zhí)行一次循環(huán)體,然后進行條件的判斷,如果條件不滿足,繼續(xù)返回執(zhí)行循環(huán)
體,然后再進行條件的判斷,這個過程反復(fù)進行,直到某一次條件滿足時,不再執(zhí)行循
環(huán)體,跳到LOOPUNTIL語句后執(zhí)行其他語句,是先執(zhí)行循環(huán)體后進行條件判斷的循環(huán)語
句。
分析:當(dāng)型循環(huán)與直到型循環(huán)的區(qū)別:(先由學(xué)生討論再歸納)
(1)當(dāng)型循環(huán)先判斷后執(zhí)行,直到型循環(huán)先執(zhí)行后判斷;
在WHILE語句中,是當(dāng)條件滿足時執(zhí)行循環(huán)體,在UNTIL語句中,是當(dāng)條件不滿足時執(zhí)
行循環(huán)
1.3.1輾轉(zhuǎn)相除法與更相減損術(shù)
1、輾轉(zhuǎn)相除法。也叫歐幾里德算法,用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:
(1):用較大的數(shù)m除以較小的數(shù)n得到一個商席和一個余數(shù)“);(2):若4=0,則
n為m,n的最大公約數(shù);若qW0,則用除數(shù)n除以余數(shù)&得到一個商鳥和一個余數(shù)4;
(3):若4=0,則4為m,n的最大公約數(shù);若打0,則用除數(shù)%除以余數(shù)4得到
一個商$2和一個余數(shù)耳;……依次計算直至凡=0,此時所得到的即為所
求的最大公約數(shù)。
2、更相減損術(shù)
我國早期也有求最大公約數(shù)問題的算法,就是更相減損術(shù)。在《九章算術(shù)》中有更相減
損術(shù)求最大公約數(shù)的步驟:可半者半之,不可半者,副置分母?子之?dāng)?shù),以少減多,更相
減損,求其等也,以等數(shù)約之。
翻譯為:(1):任意給出兩個正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡;若不是,
執(zhí)行第二步。(2):以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大
數(shù)減小數(shù)。繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)(等數(shù))就是所求的最大
公約數(shù)。
例2用更相減損術(shù)求98與63的最大公約數(shù).
分析:(略)
3、輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別:
(1)都是求最大公約數(shù)的方法,計算上輾轉(zhuǎn)相除法以除法為主,更相減損術(shù)以減法為主,
計算次數(shù)上輾轉(zhuǎn)相除法計算次數(shù)相對較少,特別當(dāng)兩個數(shù)字大小區(qū)別較大時計算次數(shù)的
區(qū)別較明顯。
(2)從結(jié)果體現(xiàn)形式來看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是以相除余數(shù)為0則得到,而更相減損
術(shù)則以減數(shù)與差相等而得到
1.3.2秦九韶算法與排序
1、秦九韶算法概念:
f(x尸anXn+an.ix""+….+aix+ao求值問題
nnn_1n2
f(x)=anx+an.|X''+....+aix+a()=(anx+an.ix'+….+ai)x+a0
n2n3
=((anx_+an.?x'+...,+a2)x+ai)x+a0
=..=(...(anX+an-i)x+an-2)x+...+ai)x+ao
求多項式的值時,首先計算最內(nèi)層括號內(nèi)依次多項式的值,即V尸%x+an」
然后由內(nèi)向外逐層計算一次多項式的值,即
v2=vlx+an_2v3=v2x+an-3……vn=vn.|X+a0.
這樣,把n次多項式的求值問題轉(zhuǎn)化成求n個一次多項式的值的問題。
2、兩種排序方法:直接插入排序和冒泡排序
1、直接插入排序
基本思想:插入排序的思想就是讀一個,排一個。將第1個數(shù)放入數(shù)組的第1個元素中,
以后讀入的數(shù)與已存入數(shù)組的數(shù)進行比較,確定它在從大到小的排列中應(yīng)處的位置.將
該位置以及以后的元素向后推移一個位置,將讀入的新數(shù)填入空出的位置中.(由于算法
簡單,可以舉例說明)
2、冒泡排序
基本思想:依次比較相鄰的兩個數(shù),把大的放前面,小的放后面.即首先比較第1個數(shù)和第
2個數(shù),大數(shù)放前,小數(shù)放后.然后比較第2個數(shù)和第3個數(shù).....直到比較最后兩個數(shù).
第一趟結(jié)束,最小的一定沉到最后,重復(fù)上過程,仍從第1個數(shù)開始,到最后第2個數(shù).....
由于在排序過程中總是大數(shù)往前,小數(shù)往后,相當(dāng)氣泡上升,所以叫冒泡排序.
1.3.3進位制
1、概念:進位制是一種記數(shù)方式,用有限的數(shù)字在不同的位置表示不同的數(shù)值??墒褂?/p>
數(shù)字符號的個數(shù)稱為基數(shù),基數(shù)為n,即可稱n進位制,簡稱n進制?,F(xiàn)在最常用的是十
進制,通常使用10個阿拉伯?dāng)?shù)字0-9進行記數(shù)。對于任何一個數(shù),我們可以用不同的進
位制來表示。比如:十進數(shù)57,可以用二進制表示為111001,也可以用八進制表示為71、
用十六進制表示為39,它們所代表的數(shù)值都是一樣的。
一般地,若k是一個大于一的整數(shù),那么以k為基數(shù)的k進制可以表示為:
(0<an<k,O<%,…,q,4<左),
而表示各種進位制數(shù)一般在數(shù)字右下腳加注來表示,如111001⑵表示二進制數(shù),34⑸表示5
進制數(shù)
20XX屆高一同步練習(xí)題新課標必修3
算法部分練習(xí)(一)
(定義及古算法案例)
1.家中配電盒至電視機的線路斷了,檢測故障的算法中,為了使檢測的次數(shù)
盡可能少,第一步檢測的是
(A)靠近電視的一小段,開始檢查(B)電路中點處檢查
(C)靠近配電盒的一小段開始檢查(D)隨機挑一段檢查
2.早上從起床到出門需要洗臉刷牙(5min)、刷水壺(2min)、燒水(8min)、泡
面(3min)、吃飯(10min)、聽廣播(8min)幾個步驟,從下列選項中選最好
的一種算法
(A)S1洗臉刷牙、S2刷水壺、S3燒水、S4泡面、S5吃飯、S6聽廣播
(B)S1刷水壺、S2燒水同時洗臉刷牙、S3泡面、S4吃飯、S5聽廣播
(OS1刷水壺、S2燒水同時洗臉刷牙、S3泡面、S4吃飯同時聽廣播
(D)S1吃飯同時聽廣播、S2泡面、S3燒水同時洗臉刷牙、S4刷水壺
3.算法:
S1輸入“;
S2判斷〃是否是2,若〃=2,則〃滿足條件,若”〉2,則執(zhí)行S3:
S3依次從2到〃-1檢驗?zāi)懿荒苷?,若不能整除〃,則〃滿足條件;
滿足上述條件的〃是
(A)質(zhì)數(shù)(B)奇數(shù)(C)偶數(shù)(D)約數(shù)
4.算法:S1,找=a:S2若則m=b;S3若c<〃z,則加=c;S4若貝Im=d;
S5輸出則輸出的?”表示
(A)a,"c,d中最大值(B)a,0,c,d中最小值
(0將a,b,c,d由小到大排序(D)將a,"c,d由大到小排序
5.給出以下四個問題:
①輸入一個數(shù)x,輸出它的相反數(shù);
②求面積為6的正方形的周長;
③求三個數(shù)a,。,c,中的最大數(shù);
_x-l(x>0)
④求函數(shù)/(x)=二二的函數(shù)值;
x+2(x<0)
⑤求兩個正整數(shù)a力相除的商及余數(shù).
其中不需要用條件語句來描述其算法的有.
6.下面的問題中必須用條件分支結(jié)構(gòu)才能實現(xiàn)的是.
①求面積為1的正三角形的周長;
②求方程ax+8=0(a為為常數(shù))的根;
③求兩個實數(shù)a,b中的最大者;
④求1+2+3+…+100的值
7.840和1764的最大公約數(shù)是.
8.數(shù)4557,1953,5115的最大公約數(shù)為.
9.兩個正整數(shù)120與252的最小公倍數(shù)為
10.用等值法求294和84的最大公約數(shù)時,需要做減法的次數(shù)是
(A)2(B)3(04(D)5
11.用秦九韶算法計算多項式/(x)=12+35x—82+7索+81+玄5+短,在
*=-4時的值時,匕的值為
(A)-845(B)220(C)-57(D)34
nn
12.用秦九韶算法求〃次多項式f(x)=anx+an_}x~'4------\-axx+a0,當(dāng)x=X。
時,求/(%)需要算乘方、乘法、加法的次數(shù)分別為
(A)"(B)n,2n,n(C)0,2n,n(D)0,n,n
2
20XX屆高一同步練習(xí)題新課標必修3
算法部分練習(xí)(二)
(程序框圖)
1.閱讀下面的程序框圖,該程序輸出的結(jié)果是.
3.(07-海南寧夏-5)如果執(zhí)行下面的程序框圖,那么輸出的S=
(A)2450(B)2500
(C)2550(D)2652
4.在如圖所示的程序框圖中輸入3,結(jié)果會輸出
/輸,s/
結(jié)’束
5.(08-山東-13)執(zhí)行下邊的程序框圖,若p=0.8,則輸出的“=
6.(07-山東-10)閱讀右邊的程序框圖,若輸入的〃是100,則輸出的變量S和T
的值依次是.
〃=3,則輸出a=
若輸入機=4,〃=6,則輸出a
8.按如圖所示的框圖運算:若輸入x=8,則輸出k;若輸出女=2,則輸入
的光的取值范圍是.
9.閱讀下面的程序框圖,回答下列問題:若°=10以2、6=2、c=d",則輸
32
出的數(shù)是
11.閱讀下邊的程序框圖,請你寫出y關(guān)于x的函數(shù)解析式.
開始
y=-1y=0
12.下圖給出的是計算
1+工+工+…+二一的值的一個程序框圖(其中〃的值由鍵盤輸入),其中①處
352〃一1
應(yīng)填________,②處應(yīng)填___________.
/輸個〃/
s=0,i=1
13.下面是一個算法的程序框圖,當(dāng)輸入的x值為3時,輸出的y的結(jié)果恰好是
1/3,則?處的關(guān)系式是.
14.(08-寧夏-5)下面的程序框圖,如果輸入三個實數(shù)a、b、c,要求輸出這三個數(shù)
中最大的數(shù),那么在空白的判斷框中,應(yīng)該填入.
則在判斷框中可以填寫的表達式
n-]
為
.下圖是計算「一+」一+
16+——的值的算法框圖,其中在判斷框中應(yīng)填入的
1x22x39x10
條件是.
新課標必修3
(基本算法語句)
13.下列給出的賦值語句中正確的是
(A)4=M(B)M=-M(C)8=A=3(D)x+y=0
14.下列給變量賦值的語句正確的是
(A)3=a(B)a+1=a(C)a=b=c=3(D)a=a+8
15.下列賦值語句中錯誤的是
(A)N=N+l?K=K*K(C)C=A(8+。)(D)C=A/B
16.已知變量已被賦值,要交換a力的值,應(yīng)使用的算法語句是
17.下邊程序運行后的結(jié)果是
(A)1,2,3⑻2,3,1(02,3,2(D)3,2,1
18.閱讀下面的程序,當(dāng)x=3時,該程序運行后,輸出的結(jié)果是
(A)3(B)9(C)N(D)x2
19.下面的程序是用來計算()的值
(A)3xlO(B)355(C)3'°(D)Ix2x3x---xl()
(第5題)(第6題)(第7題)
20.下面為一個求20個數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語句為
(A)i>20(B)z<20(C)z>=20(D)i<=20
21.下面的程序運行后的輸出結(jié)果為.
22.下面的程序運行后的輸出結(jié)果為
(A)17(B)19(021
S=0;i=l;(D)23
while________
i=l;
x=input(nx=")
whilei<8
S=S+x;s=0;
i=i+2;
i=i+1;
fori=1:2:7s=2*i+3;
end
s=2*i+s;i=i-l;
a=S/20;
endend
print(%io(2),s)s
(第8題)—(第9題)(第10M)
23.已知語句fori=1:2:99,該語句一共執(zhí)行循環(huán)次數(shù)為次.
24.fori=-100:10:190,該語句共執(zhí)行循環(huán)次.
25.下面的程序語句執(zhí)行后的輸出是.
26.下面的程序語句執(zhí)行后的輸出是i=,j=.
27.下面的程序語句執(zhí)行后的輸出是j=
j=l;
a=l;b=2;c=3;i=5;j=-2whilej*j<100,j=j+l;end
(a*a+b*b+c*c)/(2*a*b*c)i=i+j,j=i+jdisp(j)
(第13題)(第14題)(第15題)
28.右面程序運行的結(jié)果為i=l;whilei<8i=i+2;S=2*i+3;end
(A)17(B)19(C)21(D)23print(%io⑵,S)
29.Scilab中用rand()函數(shù)產(chǎn)生(0,1)的均勻隨機數(shù),要想得到(-2,6)之間的隨機
數(shù)需使用變換,
30.下面的程序輸出的結(jié)果是
31.為了在運行下面的程序之后得到輸出y=9,鍵盤輸入應(yīng)該是.
32.下面的程序語句執(zhí)行后輸入a=3,b=-l,n=5,輸出的是.
s=o;
fori=l:2:ll
S=2S+3;x=input("x=”);
ifS>20ifx<0
S=S-20;y=(x+l)*(x+l)
endelsey=(x-l)*(x-l)
endend
S
1______________I
33.右由褐1相瞥語句執(zhí)行后輸解我警痂出的是—c?ro—
x二input("x=’');
ifx>5O,y=x*x+2;
>'=?
elseifx<=10,y=0;
elseifx<=30,y=0.1*x;
34.請寫出一個程序,找出這樣的矩形,使它滿足elsey=0.25*x;
end
以下三個條件
end
①四條邊均為整數(shù);end
②面積數(shù)與周長相等;y
③各邊長不超過400.
35.給出30個數(shù):1,2,4,7,11,……,其規(guī)律是:
第1個數(shù)是1,第2個數(shù)比第1個數(shù)大1,第3個
數(shù)比第2個數(shù)大2,第4個數(shù)比第3個數(shù)大3,依此
類推,要計算這30個數(shù)的和,現(xiàn)已給出了該問題算
法的程序框圖.
(1)補充右邊的程序框圖,使之能完成該題算法功能.
⑵根據(jù)程序框圖寫出程序.(所用變量要與算法中
一致)
24.有一個正方形的網(wǎng)格,其中每一個最小正方形的邊長都等于6cm,現(xiàn)用直徑
為2cm的硬幣投擲到此網(wǎng)格上.
(1)求硬幣落下后與格線有公共點的概率;
⑵編寫一個Scilab程序模擬這個試驗.
20XX屆高一年級數(shù)學(xué)同步練習(xí)之必修320XX年3月
參考答案
算法部分練習(xí)(一)
01-05.B,C,A,B,①②⑤0670.②③,84,93,2520,C11-12.B,D
算法部分練習(xí)(三)
01-05.B,D,C,c=a;a=b,b=c,C06-10.C,B,D,32,C
7
11-16.50,30,3;1,10,C17.rand()*8-2或6-rand()*8
6
18-21.9,-4或4,3,10
22.
23.z<30,p=p+i,s=s+p,輸出n24.5/9
第二章統(tǒng)計
簡單隨機抽樣
1.簡單隨即抽樣的含義
一■般地,設(shè)一■個總體有N個個體,從中逐個不放回地抽取n個個體作為樣本(n
WN),如果每次抽取時總體內(nèi)的各個個體被抽到的機會都相等,則這種抽樣方
法叫做簡單隨機抽樣.
⑴每個個體每次被抽到的概率是;
⑵每個個體被抽到的概率是;
?根據(jù)你的理解,簡單隨機抽樣有哪些主要特點?
⑴總體的個體數(shù)有限;
⑵樣本的抽取是逐個進行的,每次只抽取一個個體;
⑶抽取的樣本不放回,樣本中無重復(fù)個體;
(4)每個個體被抽到的機會都相等,抽樣具有公平性.
2.簡單隨機抽樣常用的方法:
⑴抽簽法;⑵隨機數(shù)表法;⑶計算機模擬法;⑷使用統(tǒng)計軟件直接抽取。
★抽簽法的操作步驟?
第一步,將總體中的所有個體編號,并把號碼寫在形狀、大小相同的號簽上.
第二步,將號簽放在一個容器中,并攪拌均勻
第三步,每次從中抽取一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本.
?抽簽法有哪些優(yōu)點和缺點?
優(yōu)點:簡單易行,當(dāng)總體個數(shù)不多的時候攪拌均勻很容易,個體有均等的機
會被抽中,從而能保證樣本的代表性.
缺點:當(dāng)總體個數(shù)較多時很難攪拌均勻,產(chǎn)生的樣本代表性差的可能性很大;
誤差相比其它抽樣也比較大。
★利用隨機數(shù)表法從含有N個個體的總體中抽取一個容量為n的樣本,其抽樣
步驟如何?
第一步,將總體中的所有個體編號.
第二步,在隨機數(shù)表中任選一個數(shù)作為起始數(shù).
第三步,從選定的數(shù)開始依次向右(向左、向上、向下)讀,將編號范圍內(nèi)
的數(shù)取出,編號范圍外的數(shù)去掉,直到取滿n個號碼為止,就得到一個容量為n
的樣本.
系統(tǒng)抽樣:
1.系統(tǒng)抽樣的定義:.
一般地,要從容量為N的總體中抽取容量為n的樣本,可將總體分成均衡
的若干部分,然后按照預(yù)先制定的規(guī)則,從每一部分抽取一個個體,得到所需要
的樣本,這種抽樣的方法叫做系統(tǒng)抽樣.
?由系統(tǒng)抽樣的定義可知系統(tǒng)抽樣有以下特征:
⑴當(dāng)總體容量N較大時,采用系統(tǒng)抽樣。
⑵將總體分成均衡的若干部分指的是將總體分段,分段的間隔栗求相等,因
N
此,系統(tǒng)抽樣又稱等距抽樣,間隔一般為k=L.
n
⑶預(yù)先制定的規(guī)則指的是:在第1段內(nèi)采用簡單隨機抽樣確定一個起始編
號,在此編號的基礎(chǔ)上加上分段間隔的整倍數(shù)即為抽樣編號
★系統(tǒng)抽樣的一般步驟
⑴用系統(tǒng)抽樣從總體中抽取樣本時,首先要做的工作是什么?將總體中的所
有個體編號.
如果用系統(tǒng)抽樣從605件產(chǎn)品中抽取60件進行質(zhì)量檢查,由于605件產(chǎn)品不能
均衡分成60部分,⑵應(yīng)先從總體中隨機剔除5個個體,再均衡分成60部分.
一般地,用系統(tǒng)抽樣從含有N個個體的總體中抽取一個容量為n的樣本,其操作
步驟如何?
第一步,將總體的N個個體編號.
第二步,確定分段間隔k,對編號進行分段.
第三步,在第1段用簡單隨機抽樣確定起始個體編號I.
第四步,按照一定的規(guī)則抽取樣本.
分層抽樣
1.分層抽樣的定義:一
若總體由差異明顯的幾部分組成,抽樣時,先將總體分成互不交叉的層,然
后按照一定的比例,從各層獨立地抽取一定數(shù)量的個體,再將各層取出的個體合
在一起作為樣本,這樣的抽樣叫做分層抽樣.所以分層抽樣又稱類型抽樣.
?應(yīng)用分層抽樣應(yīng)遵循以下要求及具體步驟:一
⑴分層:將相似的個體歸入一類,即為一層,分層栗求每層的各個個體互不
交叉,即遵循不重復(fù)、不遺漏的原則。
⑵分層抽樣為保證每個個體等可能入樣,需遵循在各層中進行簡單隨機抽樣,每
層樣本數(shù)量與每層個體數(shù)量的比與這層個體數(shù)量與總體容量的比相等。
★一般地,分層抽樣的操作步驟如何?
第一步,計算樣本容量與總體的個體數(shù)之比.
第二步,將總體分成互不交叉的層,按比例確定各層栗抽取的個體數(shù).
第三步,用簡單隨機抽樣或系統(tǒng)抽樣在各層中抽取相應(yīng)數(shù)量的個體.
第四步,將各層抽取的個體合在一起,就得到所取樣本
2.簡單隨機抽樣、系統(tǒng)抽樣和分層抽樣三種抽樣的類比學(xué)習(xí)
練習(xí)題:
—>選擇題:
1.某單位有老年人28人,中年人54人,青年人81人.為了調(diào)查他們的身
體狀況,需從他們中抽取一個容量為36的樣本,最適合抽取樣本的方法是
().
A.簡單隨機抽樣B.系統(tǒng)抽樣
C.分層抽樣D.先從老年人中剔除一人,然后分
層抽樣
2.某學(xué)校為了了解高一年級學(xué)生對教師教學(xué)的意見,打算從高一年級
2007名學(xué)生中抽取50名進行抽查,若采用下面的方法選取:先用簡單隨機抽
樣從2007人中剔除7人,剩下2000人再按系統(tǒng)抽樣的方法進行,則每人入
選的機會()
A.不全相等B.均不相等C.都相等D.無法確定
3.有20位同學(xué),編號從1至20,現(xiàn)在從中抽取4人作問卷調(diào)查,用系統(tǒng)
抽樣方法確定所
抽的編號為()
A.5,10,15,20B,2,6,10,14C.2,4,6,8D.5,8,
11,14
4.某公司在甲、乙、丙、丁四個地區(qū)分別有150個、120個、180個、150
個銷售點,公
司為了調(diào)查產(chǎn)品銷售的情況,需從這600個銷售點中抽取一個容量為100的樣本,
記這項調(diào)查為(1);在丙地區(qū)中有20個特大型銷售點,要從中抽取7個調(diào)查其銷
售收入和售后服務(wù)情況,記這項調(diào)查為(2)。則完成(1)、(2)這兩項調(diào)查宜采用
的抽樣方法依次是()
A.分層抽樣法,系統(tǒng)抽樣法B.分層抽樣法,簡單隨機抽樣
C.系統(tǒng)抽樣法,分層抽樣法D.簡單隨機抽樣法,分層抽樣法
5.某校1000名學(xué)生中,0型血有400人,A型血有250人,B型血有250
人,AB型血有100人,為了研究血型與色弱的關(guān)系,要從中抽取一個容量為40
的樣本,按照分層抽樣的方法抽取樣本,則0型血、A型血、B型血、AB型血的
人要分別抽的人數(shù)為()
A.16、10、10、4B.14、10、10、6C.13、12、12、3
D.15、8、8、9
6.為了了解廣州地區(qū)初三學(xué)生升學(xué)考試數(shù)學(xué)成績的情況,從中抽取50本密
封試卷,每本30份試卷,這個問題中的樣本容量是()
A.30B.50C.1500D.150
7.某單位有技工18人、技術(shù)員12人、工程師6人,需要從這些人中抽取
一個容量為"的樣本.如果采用系統(tǒng)抽樣和分層抽樣方法抽取,都不用剔除個體;
如果容量增加一個,則在采用系統(tǒng)抽樣時,需要在總體中剔除1個個體,則樣本
容量〃為()
A.4B.5C.6D.無法確定
二、填空題
8.(2008?安慶模擬)某校高中生共有900人,其中高一年級300人,高二
年級200人,高
三年級400人,現(xiàn)分層抽取容量為45的樣本,那么高一、高二、高三年級抽取
的人數(shù)分別為.
9.某牛奶生產(chǎn)線上每隔30分鐘抽取一袋進行檢驗,則該抽樣方法為①;從
某中學(xué)的30名數(shù)
學(xué)愛好者中抽取3人了解學(xué)習(xí)負擔(dān)情況,則該抽樣方法為②.那么①,②分別
為.
10.下列抽樣實驗中,最適宜用系統(tǒng)抽樣的是(填序號).
①某市的4個區(qū)共有2000名學(xué)生,且4個區(qū)的學(xué)生人數(shù)之比為3:2:8:
2,從中抽取200人入樣:
②某廠生產(chǎn)的2000個電子元件中隨機抽取5個人樣;
③從某廠生產(chǎn)的2000個電子元件中隨機抽取200個人樣;
④從某廠生產(chǎn)的20個電子元件中隨機抽取5個入樣;
11.(2008?重慶文)某校高三年級有男生500人,女生400人,為了解該
年級學(xué)生的健康情
況,從男生中任意抽取25人,從女生中任意抽取20人進行調(diào)查,這種抽樣方法
是.
12.某中學(xué)有高一學(xué)生400人,高二學(xué)生300人,高三學(xué)生200人,學(xué)校團
委欲用分層抽樣的
方法抽取18名學(xué)生進行問卷調(diào)查,則下列判斷不正確的是(填序
號).
①高一學(xué)生被抽到的概率最大
②高三學(xué)生被抽到的概率最大
③高三學(xué)生被抽到的概率最小
④每名學(xué)生被抽到的概率相等
13.某商場有四類食品,其中糧食類、植物油類、動物性食品類及果蔬類分
別有40種、10種、
30種、20種,現(xiàn)從中抽取一個容量為20的樣本進行食品安全檢測,若采用分層
抽樣的方法抽取樣本,則抽取的植物油類與果蔬類食品種數(shù)之和是.
14.(2008?天津文,11)一個單位共有職工200人,其中不超過45歲的有
120人,超過45
歲的有80人.為了調(diào)查職工的健康狀況,用分層抽樣的方法從全體職工中抽取一
個容量為25的樣本,應(yīng)抽取超過45歲的職工人.
15.將參加數(shù)學(xué)競賽的1000名學(xué)生編號如下0001,0002,0003,1000,
打算從中抽取
一個容量為50的樣本,按系統(tǒng)抽樣的方法分成50個部分,如果第一部分編號為
0001,0002,0020,從第一部分隨機抽取一個號碼為0015,則第40個號碼
為.
16.管理人員從一池塘內(nèi)撈出30條魚,做上標記后放回池塘。10天后,又
從池塘內(nèi)撈出50條魚,其中有標記的有2條。根據(jù)以上數(shù)據(jù)可以估計該池塘內(nèi)
共有條魚。
17.某校高中部有三個年級,其中高三有學(xué)生1000人,現(xiàn)采用分層抽樣法抽
取一個容量為185
的樣本,已知在高一年級抽取了75人,高二年級抽取了60人,則高中部共有_
_學(xué)生。
用樣本的頻率分布估計總體分布
一、我們把樣本抽取后,要對樣本進行分析來研究總體的分布情況,對樣本進
行分析常采取兩種
方式:⑴列頻率分布表;⑵做頻率分布直方圖.
?列頻率分布表的步驟:
⑴求極差(即樣本中的最大值與最小值的差):
⑵決定組距與組數(shù)(組數(shù)=慧);
組距
⑶將數(shù)據(jù)分組:
⑷列頻率分布表.
?根據(jù)頻率分布表做頻率分布直方圖應(yīng)注意兩點:
頻率
⑴縱軸的意義:
⑵橫軸的意義:樣本內(nèi)容(每個矩形下面是組距).
二、典例精析
例1:下表給出了某校500名12歲男孩中用隨機抽樣得出的120人的身
高(單位cm)
區(qū)間界限[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)
人數(shù)5810223320
區(qū)間界限[146,150)[150,154)[154,158)
人數(shù)11()5
(1)列出樣本頻率分布表;
(2)一畫出頻率分布直方圖;
(3)估計身高小于134cm的人數(shù)占總?cè)藬?shù)的百分比
頻率/組距
例2:為了了解高一學(xué)生的體能情況,某校
抽取部分學(xué)生進行一分鐘跳繩次數(shù)次測試,
將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如
函現(xiàn):m?
圖),圖中從左到右各小長方形面積之比
為12.
(1)第二小組的頻率是多少?樣本容量是芻
(2)若次數(shù)在110以上(含110次)為達木
率是多少?
(3)在這次測試中,學(xué)生跳繩次數(shù)的中位數(shù)落在哪個小組內(nèi)?請說明理由。
分析:在頻率分布直方圖中,各小長方形的面積等于相應(yīng)各組的頻率,小長方形
的高與頻數(shù)成正比,各組頻數(shù)之和等于樣本容量,頻率之和等于1。
1.根據(jù)某水文觀測點的歷史統(tǒng)計數(shù)據(jù),得到某條河流水位的頻率分布直方圖如下.從圖中
可以看出,該水文觀測點平均至少一百年才遇到一次的洪水的最低水位是()
A.48米B.49米C.50米D.51米
2.常用的抽樣方法有:___________________________________
3.(20XX年新課程卷文第13題)據(jù)新華社
20XX年3月12日電,1985年?2000年我25.0
國農(nóng)村人均居住面積如圖所示,其中,從20.0
.年到,年的五年間增長最快.15.0
4.已知200輛汽車通過某一段公路時的時速
的頻率分布直方圖如右圖所示,則時速在
[60,70]的汽車大約有..輛.
5.(12分)為了解某地初三年級男生的身高情況,從其中的一個學(xué)校選取容量為60的樣
本(60名男生的身
高),分組情況如下:
分組147.5?155.5155.5?163.5163.5?171.5171.5-179.5
頻數(shù)621m
頻率a0.1
(1)求出表中a,m的值.(2)畫出頻率分布直方圖和頻率折線圖
答案:一、選擇題:l.D2.C3.A4.B5.A6.C7.C
二、填空題:8.15,10,209.系統(tǒng)抽樣,簡單隨機抽樣10.@11.分層抽
樣法
12.①②③13.614.1015.079516.75017.3700
解:(1)由于頻率分布直方圖以面積的形式反映了數(shù)據(jù)落在各小組內(nèi)的頻率大小,
4
因此第二小組的頻率為:--------------------=0.08
2+4+17+15+9+3
第二小組頻數(shù)
又因為頻率=
樣本容量
第二小組頻數(shù)_12
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鋼鐵行業(yè)保安工作總結(jié)
- 點滴關(guān)懷感染科護士總結(jié)
- 科技在前臺工作中的應(yīng)用計劃
- 網(wǎng)絡(luò)科技行業(yè)客服工作總結(jié)
- 2024年稅務(wù)師題庫帶答案(典型題)
- 2024年設(shè)備監(jiān)理師考試題庫及答案4
- 2024年認識冰的教案
- 2024年燃氣管網(wǎng)工安全作業(yè)技能考試題庫及答案
- 2024年花兒朵朵教案
- 2024年電工安全總結(jié)
- 妊娠劇吐伴酮癥護理查房課件
- 200#溶劑油安全技術(shù)說明書
- 單位洗車房管理制度
- 廣西壯族自治區(qū)欽州市浦北縣2022-2023學(xué)年七年級上學(xué)期期末英語試題
- 動力學(xué)全套課件
- 廣東省深圳市2022-2023學(xué)年六年級上學(xué)期語文期末試卷(含答案)6
- 2022-2023學(xué)年北京市海淀區(qū)高一(上)期末生物試卷(附答案詳解)
- 河南省出版物經(jīng)營許可證申請登記表
- 細集料篩分試驗檢測記錄表模板
- (完整word版)聘書模板紅色
- 廣西柳州市名校2024屆數(shù)學(xué)高一上期末統(tǒng)考試題含解析
評論
0/150
提交評論