版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江蘇省四星級(jí)高中部分學(xué)校2025屆高三年級(jí)四月調(diào)研考試數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知下列命題:①“”的否定是“”;②已知為兩個(gè)命題,若“”為假命題,則“”為真命題;③“”是“”的充分不必要條件;④“若,則且”的逆否命題為真命題.其中真命題的序號(hào)為()A.③④ B.①② C.①③ D.②④2.一個(gè)幾何體的三視圖如圖所示,正視圖、側(cè)視圖和俯視圖都是由一個(gè)邊長為的正方形及正方形內(nèi)一段圓弧組成,則這個(gè)幾何體的表面積是()A. B. C. D.3.已知雙曲線的焦距是虛軸長的2倍,則雙曲線的漸近線方程為()A. B. C. D.4.復(fù)數(shù)滿足為虛數(shù)單位),則的虛部為()A. B. C. D.5.已知復(fù)數(shù),則的虛部是()A. B. C. D.16.已知函數(shù)的圖象在點(diǎn)處的切線方程是,則()A.2 B.3 C.-2 D.-37.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.3 C. D.48.已知集合,集合,則等于()A. B.C. D.9.已知定義在上的函數(shù)滿足,且當(dāng)時(shí),,則方程的最小實(shí)根的值為()A. B. C. D.10.對于正在培育的一顆種子,它可能1天后發(fā)芽,也可能2天后發(fā)芽,….下表是20顆不同種子發(fā)芽前所需培育的天數(shù)統(tǒng)計(jì)表,則這組種子發(fā)芽所需培育的天數(shù)的中位數(shù)是()發(fā)芽所需天數(shù)1234567種子數(shù)43352210A.2 B.3 C.3.5 D.411.已知復(fù)數(shù),為的共軛復(fù)數(shù),則()A. B. C. D.12.二項(xiàng)式的展開式中,常數(shù)項(xiàng)為()A. B.80 C. D.160二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項(xiàng)和為,,則滿足的正整數(shù)的值為______.14.若方程有兩個(gè)不等實(shí)根,則實(shí)數(shù)的取值范圍是_____________.15.曲線f(x)=(x2+x)lnx在點(diǎn)(1,f(1))處的切線方程為____.16.三對父子去參加親子活動(dòng),坐在如圖所示的6個(gè)位置上,有且僅有一對父子是相鄰而坐的坐法有________種(比如:B與D、B與C是相鄰的,A與D、C與D是不相鄰的).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓的左右焦點(diǎn)分別為,離心率是,動(dòng)點(diǎn)在橢圓上運(yùn)動(dòng),當(dāng)軸時(shí),.(1)求橢圓的方程;(2)延長分別交橢圓于點(diǎn)(不重合).設(shè),求的最小值.18.(12分)2019年是五四運(yùn)動(dòng)100周年.五四運(yùn)動(dòng)以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100年.為繼承和發(fā)揚(yáng)五四精神在青年節(jié)到來之際,學(xué)校組織“五四運(yùn)動(dòng)100周年”知識(shí)競賽,競賽的一個(gè)環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機(jī)抽取3道作答,現(xiàn)有甲同學(xué)參加該環(huán)節(jié)的比賽.(1)求甲同學(xué)至少抽到2道B類題的概率;(2)若甲同學(xué)答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨(dú)立.現(xiàn)已知甲同學(xué)恰好抽中2道A類題和1道B類題,用X表示甲同學(xué)答對題目的個(gè)數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.19.(12分)如圖,在直三棱柱中,,點(diǎn)分別為和的中點(diǎn).(Ⅰ)棱上是否存在點(diǎn)使得平面平面?若存在,寫出的長并證明你的結(jié)論;若不存在,請說明理由.(Ⅱ)求二面角的余弦值.20.(12分)已知函數(shù)的圖象在處的切線方程是.(1)求的值;(2)若函數(shù),討論的單調(diào)性與極值;(3)證明:.21.(12分)等差數(shù)列中,,,分別是下表第一、二、三行中的某一個(gè)數(shù),且其中的任何兩個(gè)數(shù)不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)請選擇一個(gè)可能的組合,并求數(shù)列的通項(xiàng)公式;(2)記(1)中您選擇的的前項(xiàng)和為,判斷是否存在正整數(shù),使得,,成等比數(shù)列,若有,請求出的值;若沒有,請說明理由.22.(10分)在平面直角坐標(biāo)系中,曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動(dòng)點(diǎn),求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
由命題的否定,復(fù)合命題的真假,充分必要條件,四種命題的關(guān)系對每個(gè)命題進(jìn)行判斷.【詳解】“”的否定是“”,正確;已知為兩個(gè)命題,若“”為假命題,則“”為真命題,正確;“”是“”的必要不充分條件,錯(cuò)誤;“若,則且”是假命題,則它的逆否命題為假命題,錯(cuò)誤.故選:B.本題考查命題真假判斷,掌握四種命題的關(guān)系,復(fù)合命題的真假判斷,充分必要條件等概念是解題基礎(chǔ).2.C【解析】
畫出直觀圖,由球的表面積公式求解即可【詳解】這個(gè)幾何體的直觀圖如圖所示,它是由一個(gè)正方體中挖掉個(gè)球而形成的,所以它的表面積為.故選:C本題考查三視圖以及幾何體的表面積的計(jì)算,考查空間想象能力和運(yùn)算求解能力.3.A【解析】
根據(jù)雙曲線的焦距是虛軸長的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點(diǎn)在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.本題考查雙曲線的簡單幾何性質(zhì),以及雙曲線的漸近線方程.4.C【解析】
,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,故的虛部為.故選:C.本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.5.C【解析】
化簡復(fù)數(shù),分子分母同時(shí)乘以,進(jìn)而求得復(fù)數(shù),再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C本小題主要考查復(fù)數(shù)的乘法、除法運(yùn)算,考查共軛復(fù)數(shù)的虛部,屬于基礎(chǔ)題.6.B【解析】
根據(jù)求出再根據(jù)也在直線上,求出b的值,即得解.【詳解】因?yàn)?,所以所以,又也在直線上,所以,解得所以.故選:B本題主要考查導(dǎo)數(shù)的幾何意義,意在考查學(xué)生對這些知識(shí)的理解掌握水平.7.C【解析】
首先把三視圖轉(zhuǎn)換為幾何體,該幾何體為由一個(gè)三棱柱體,切去一個(gè)三棱錐體,由柱體、椎體的體積公式進(jìn)一步求出幾何體的體積.【詳解】解:根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為由一個(gè)三棱柱體,切去一個(gè)三棱錐體,如圖所示:故:.故選:C.本題考查了由三視圖求幾何體的體積、需熟記柱體、椎體的體積公式,考查了空間想象能力,屬于基礎(chǔ)題.8.B【解析】
求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.該題考查的是有關(guān)集合的運(yùn)算的問題,涉及到的知識(shí)點(diǎn)有一元二次不等式的解法,集合的運(yùn)算,屬于基礎(chǔ)題目.9.C【解析】
先確定解析式求出的函數(shù)值,然后判斷出方程的最小實(shí)根的范圍結(jié)合此時(shí)的,通過計(jì)算即可得到答案.【詳解】當(dāng)時(shí),,所以,故當(dāng)時(shí),,所以,而,所以,又當(dāng)時(shí),的極大值為1,所以當(dāng)時(shí),的極大值為,設(shè)方程的最小實(shí)根為,,則,即,此時(shí)令,得,所以最小實(shí)根為411.故選:C.本題考查函數(shù)與方程的根的最小值問題,涉及函數(shù)極大值、函數(shù)解析式的求法等知識(shí),本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.10.C【解析】
根據(jù)表中數(shù)據(jù),即可容易求得中位數(shù).【詳解】由圖表可知,種子發(fā)芽天數(shù)的中位數(shù)為,故選:C.本題考查中位數(shù)的計(jì)算,屬基礎(chǔ)題.11.C【解析】
求出,直接由復(fù)數(shù)的代數(shù)形式的乘除運(yùn)算化簡復(fù)數(shù).【詳解】.故選:C本題考查復(fù)數(shù)的代數(shù)形式的四則運(yùn)算,共軛復(fù)數(shù),屬于基礎(chǔ)題.12.A【解析】
求出二項(xiàng)式的展開式的通式,再令的次數(shù)為零,可得結(jié)果.【詳解】解:二項(xiàng)式展開式的通式為,令,解得,則常數(shù)項(xiàng)為.故選:A.本題考查二項(xiàng)式定理指定項(xiàng)的求解,關(guān)鍵是熟練應(yīng)用二項(xiàng)展開式的通式,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.6【解析】
已知,利用,求出通項(xiàng),然后即可求解【詳解】∵,∴當(dāng)時(shí),,∴;當(dāng)時(shí),,∴,故數(shù)列是首項(xiàng)為-2,公比為2的等比數(shù)列,∴.又,∴,∴,∴.本題考查通項(xiàng)求解問題,屬于基礎(chǔ)題14.【解析】
由知x>0,故.令,則.當(dāng)時(shí),;當(dāng)時(shí),.所以在(0,e)上遞增,在(e,+)上遞減.故,即.15.【解析】
求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義即可求出切線方程.【詳解】解:∵,
∴,
則,
又,即切點(diǎn)坐標(biāo)為(1,0),
則函數(shù)在點(diǎn)(1,f(1))處的切線方程為,
即,
故答案為:.本題主要考查導(dǎo)數(shù)的幾何意義,根據(jù)導(dǎo)數(shù)和切線斜率之間的關(guān)系是解決本題的關(guān)鍵.16.192【解析】
根據(jù)題意,分步進(jìn)行分析:①,在三對父子中任選1對,安排在相鄰的位置上,②,將剩下的4人安排在剩下的4個(gè)位置,要求父子不能坐在相鄰的位置,由分步計(jì)數(shù)原理計(jì)算可得答案.【詳解】根據(jù)題意,分步進(jìn)行分析:①,在三對父子中任選1對,有3種選法,由圖可得相鄰的位置有4種情況,將選出的1對父子安排在相鄰的位置,有種安排方法;②,將剩下的4人安排在剩下的4個(gè)位置,要求父子不能坐在相鄰的位置,有種安排方法,則有且僅有一對父子是相鄰而坐的坐法種;故答案為:本題考查排列、組合的應(yīng)用,涉及分步計(jì)數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1)根據(jù)題意直接計(jì)算得到,,得到橢圓方程.(2)不妨設(shè),且,設(shè),代入數(shù)據(jù)化簡得到,故,得到答案.【詳解】(1),所以,,化簡得,所以,,所以方程為;(2)由題意得,不在軸上,不妨設(shè),且,設(shè),所以由,得,所以,由,得,代入,化簡得:,由于,所以,同理可得,所以,所以當(dāng)時(shí),最小為本題考查了橢圓方程,橢圓中的向量運(yùn)算和最值,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.18.(1);(2)分布列見解析,期望為.【解析】
(1)甲同學(xué)至少抽到2道B類題包含兩個(gè)事件:一個(gè)抽到2道B類題,一個(gè)是抽到3個(gè)B類題,計(jì)算出抽法數(shù)后可求得概率;(2)的所有可能值分別為,依次計(jì)算概率得分布列,再由期望公式計(jì)算期望.【詳解】(1)令“甲同學(xué)至少抽到2道B類題”為事件,則抽到2道類題有種取法,抽到3道類題有種取法,∴;(2)的所有可能值分別為,,,,,∴的分布列為:0123本題考查古典概型,考查隨機(jī)變量的概率分布列和數(shù)學(xué)期望.解題關(guān)鍵是掌握相互獨(dú)立事件同時(shí)發(fā)生的概率計(jì)算公式.19.(Ⅰ)存在點(diǎn)滿足題意,且,證明詳見解析;(Ⅱ).【解析】
(Ⅰ)可考慮采用補(bǔ)形法,取的中點(diǎn)為,連接,可結(jié)合等腰三角形性質(zhì)和線面垂直性質(zhì),先證平面,即,若能證明,則可得證,可通過我們反推出點(diǎn)對應(yīng)位置應(yīng)在處,進(jìn)而得證;(Ⅱ)采用建系法,以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系,分別求出兩平面對應(yīng)法向量,再結(jié)合向量夾角公式即可求解;【詳解】(Ⅰ)存在點(diǎn)滿足題意,且.證明如下:取的中點(diǎn)為,連接.則,所以平面.因?yàn)槭堑闹悬c(diǎn),所以.在直三棱柱中,平面平面,且交線為,所以平面,所以.在平面內(nèi),,,所以,從而可得.又因?yàn)?,所以平?因?yàn)槠矫?,所以平面平?(Ⅱ)如圖所示,以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系.易知,,,,所以,,.設(shè)平面的法向量為,則有取,得.同理可求得平面的法向量為.則.由圖可知二面角為銳角,所以其余弦值為.本題考查面面垂直的判定定理、向量法求二面角的余弦值,屬于中檔題20.(1);(2)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無極大值;(3)見解析.【解析】
(1)切點(diǎn)既在切線上又在曲線上得一方程,再根據(jù)斜率等于該點(diǎn)的導(dǎo)數(shù)再列一方程,解方程組即可;(2)先對求導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)判斷和求解即可.(3)把證明轉(zhuǎn)化為證明,然后證明極小值大于極大值即可.【詳解】解:(1)函數(shù)的定義域?yàn)橛梢阎?,則,解得.(2)由題意得,則.當(dāng)時(shí),,所以單調(diào)遞減,當(dāng)時(shí),,所以單調(diào)遞增,所以,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無極大值.(3)要證成立,只需證成立.令,則,當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,所以的極大值為,即由(2)知,時(shí),,且的最小值點(diǎn)與的最大值點(diǎn)不同,所以,即.所以,.知識(shí)方面,考查建立方程組求未知數(shù),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和極值以及不等式的證明;能力方面,考查推理論證能力、分析問題和解決問題的能力以及運(yùn)算求解能力;試題難度大.21.(1)見解析,或;(2)存在,.【解析】
(1)滿足題意有兩種組合:①,,,②,,,分別計(jì)算即可;(2)由(1)分別討論兩種情況,假設(shè)存在正整數(shù),使得,,成等比數(shù)列,即,解方程是否存在正整數(shù)解即可.【詳解】(1)由題意可知:有兩種組合滿足條件:①,,,此時(shí)等差數(shù)列,,,所以其通項(xiàng)公式為.②,,,此時(shí)等差數(shù)列,,,所以其通項(xiàng)公式為.(2)若選擇①,.則.若,,成等比數(shù)列,則,即,整理,得,即,此方程無正整數(shù)解,故不存在正
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三年級(jí)英語教學(xué)計(jì)劃模板
- 體育教研工作計(jì)劃模板匯編
- 初一上學(xué)期班主任工作計(jì)劃024年
- 2025年社區(qū)關(guān)愛殘疾人工作計(jì)劃模板新編
- 學(xué)校檔案管理年度工作計(jì)劃范文
- 計(jì)劃標(biāo)段生產(chǎn)建議計(jì)劃
- 初一學(xué)期的班級(jí)工作計(jì)劃
- 《食品風(fēng)險(xiǎn)分析框架》課件
- 《骨科常規(guī)護(hù)理技術(shù)》課件
- 土地承包合同中糧食補(bǔ)貼協(xié)議備注書面書寫
- 舞蹈演出編導(dǎo)排練合同模板
- 路燈安裝工程項(xiàng)目實(shí)施重點(diǎn)、難點(diǎn)和解決方案
- 2024年產(chǎn)品技術(shù)秘密保護(hù)協(xié)議版B版
- 社會(huì)學(xué)概論-第一次形成性考核-國開(SC)-參考資料
- 南京審計(jì)大學(xué)《計(jì)量經(jīng)濟(jì)學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 【MOOC】線性代數(shù)-同濟(jì)大學(xué) 中國大學(xué)慕課MOOC答案
- 大美勞動(dòng)智慧樹知到期末考試答案章節(jié)答案2024年江西財(cái)經(jīng)大學(xué)
- 蔣詩萌小品《誰殺死了周日》臺(tái)詞完整版
- 勞動(dòng)教育智慧樹知到期末考試答案2024年
- 報(bào)價(jià)單(報(bào)價(jià)單模板)
- 刑事案件模擬法庭劇本完整版五篇
評論
0/150
提交評論