江蘇省泰興市黃橋集團2025屆初三2月教學質量調研數(shù)學試題試卷含解析_第1頁
江蘇省泰興市黃橋集團2025屆初三2月教學質量調研數(shù)學試題試卷含解析_第2頁
江蘇省泰興市黃橋集團2025屆初三2月教學質量調研數(shù)學試題試卷含解析_第3頁
江蘇省泰興市黃橋集團2025屆初三2月教學質量調研數(shù)學試題試卷含解析_第4頁
江蘇省泰興市黃橋集團2025屆初三2月教學質量調研數(shù)學試題試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省泰興市黃橋集團2025屆初三2月教學質量調研數(shù)學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.根據(jù)《天津市北大港濕地自然保護總體規(guī)劃(2017﹣2025)》,2018年將建立養(yǎng)殖業(yè)退出補償機制,生態(tài)補水78000000m1.將78000000用科學記數(shù)法表示應為()A.780×105B.78×106C.7.8×107D.0.78×1082.如圖,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分別過點B,C作BE⊥AG于點E,CF⊥AG于點F,則AE-GF的值為()A.1 B.2 C.32 D.3.體育測試中,小進和小俊進行800米跑測試,小進的速度是小俊的1.25倍,小進比小俊少用了40秒,設小俊的速度是米/秒,則所列方程正確的是()A. B.C. D.4.如圖,在?ABCD中,AC,BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,已知S△AEF=4,則下列結論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是()A.①②③④ B.①④ C.②③④ D.①②③5.如圖,⊙O內切于正方形ABCD,邊BC、DC上兩點M、N,且MN是⊙O的切線,當△AMN的面積為4時,則⊙O的半徑r是()A. B.2 C.2 D.46.如圖,將木條a,b與c釘在一起,∠1=70°,∠2=50°,要使木條a與b平行,木條a旋轉的度數(shù)至少是()A.10° B.20° C.50° D.70°7.港珠澳大橋目前是全世界最長的跨海大橋,其主體工程“海中橋隧”全長35578米,數(shù)據(jù)35578用科學記數(shù)法表示為()A.35.578×103 B.3.5578×104C.3.5578×105 D.0.35578×1058.一次函數(shù)的圖象上有點和點,且,下列敘述正確的是A.若該函數(shù)圖象交y軸于正半軸,則B.該函數(shù)圖象必經過點C.無論m為何值,該函數(shù)圖象一定過第四象限D.該函數(shù)圖象向上平移一個單位后,會與x軸正半軸有交點9.觀察下列圖案,是軸對稱而不是中心對稱的是()A. B. C. D.10.-4的相反數(shù)是()A. B. C.4 D.-411.對于一組統(tǒng)計數(shù)據(jù):1,6,2,3,3,下列說法錯誤的是()A.平均數(shù)是3 B.中位數(shù)是3 C.眾數(shù)是3 D.方差是2.512.如圖,已知點E在正方形ABCD內,滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.80二、填空題:(本大題共6個小題,每小題4分,共24分.)13.尺規(guī)作圖:過直線外一點作已知直線的平行線.已知:如圖,直線l與直線l外一點P.求作:過點P與直線l平行的直線.作法如下:(1)在直線l上任取兩點A、B,連接AP、BP;(2)以點B為圓心,AP長為半徑作弧,以點P為圓心,AB長為半徑作弧,如圖所示,兩弧相交于點M;(3)過點P、M作直線;(4)直線PM即為所求.請回答:PM平行于l的依據(jù)是_____.14.用48米長的竹籬笆在空地上,圍成一個綠化場地,現(xiàn)有兩種設計方案,一種是圍成正方形的場地;另一種是圍成圓形場地.現(xiàn)請你選擇,圍成________(圓形、正方形兩者選一)場在面積較大.15.化簡:①=_____;②=_____;③=_____.16.小明為了統(tǒng)計自己家的月平均用電量,做了如下記錄并制成了表格,通過計算分析小明得出一個結論:小明家的月平均用電量為330千瓦時.請判斷小明得到的結論是否合理并且說明理由______.月份六月七月八月用電量(千瓦時)290340360月平均用電量(千瓦時)33017.已知x+y=,xy=,則x2y+xy2的值為____.18.在實數(shù)﹣2、0、﹣1、2、中,最小的是_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)“機動車行駛到斑馬線要禮讓行人”等交通法規(guī)實施后,某校數(shù)學課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機調查了部分學生,調查結果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調查結果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.請結合圖中所給信息解答下列問題:(1)本次共調查名學生;扇形統(tǒng)計圖中C所對應扇形的圓心角度數(shù)是;(2)補全條形統(tǒng)計圖;(3)該校共有800名學生,根據(jù)以上信息,請你估計全校學生中對這些交通法規(guī)“非常了解”的有多少名?(4)通過此次調查,數(shù)學課外實踐小組的學生對交通法規(guī)有了更多的認識,學校準備從組內的甲、乙、丙、丁四位學生中隨機抽取兩名學生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求甲和乙兩名學生同時被選中的概率.20.(6分)某中學為開拓學生視野,開展“課外讀書周”活動,活動后期隨機調查了九年級部分學生一周的課外閱讀時間,并將結果繪制成兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖的信息回答下列問題:(1)本次調查的學生總數(shù)為_____人,被調查學生的課外閱讀時間的中位數(shù)是_____小時,眾數(shù)是_____小時;并補全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,課外閱讀時間為5小時的扇形的圓心角度數(shù)是_____;(3)若全校九年級共有學生800人,估計九年級一周課外閱讀時間為6小時的學生有多少人?21.(6分)某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調查,調查結果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調查結果繪制了如下兩幅不完整的統(tǒng)計圖.(1)這次調查的市民人數(shù)為________人,m=________,n=________;(2)補全條形統(tǒng)計圖;(3)若該市約有市民100000人,請你根據(jù)抽樣調查的結果,估計該市大約有多少人對“社會主義核心價值觀”達到“A.非常了解”的程度.22.(8分)如圖,已知等邊△ABC,AB=4,以AB為直徑的半圓與BC邊交于點D,過點D作DE⊥AC,垂足為E,過點E作EF⊥AB,垂足為F,連接FD.(1)求證:DE是⊙O的切線;(2)求EF的長.23.(8分)某校決定加強羽毛球、籃球、乒乓球、排球、足球五項球類運動,每位同學必須且只能選擇一項球類運動,對該校學生隨機抽取進行調查,根據(jù)調查結果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖:運動項目

頻數(shù)(人數(shù))

羽毛球

30

籃球

乒乓球

36

排球

足球

12

請根據(jù)以上圖表信息解答下列問題:頻數(shù)分布表中的,;在扇形統(tǒng)計圖中,“排球”所在的扇形的圓心角為度;全校有多少名學生選擇參加乒乓球運動?24.(10分)我市某學校在“行讀石鼓閣”研學活動中,參觀了我市中華石鼓園,石鼓閣是寶雞城市新地標.建筑面積7200平方米,為我國西北第一高閣.秦漢高臺門闕的建筑風格,追求穩(wěn)定之中的飛揚靈動,深厚之中的巧妙組合,使景觀功能和標志功能融為一體.小亮想知道石鼓閣的高是多少,他和同學李梅對石鼓閣進行測量.測量方案如下:如圖,李梅在小亮和“石鼓閣”之間的直線BM上平放一平面鏡,在鏡面上做了一個標記,這個標記在直線BM上的對應位置為點C,鏡子不動,李梅看著鏡面上的標記,她來回走動,走到點D時,看到“石鼓閣”頂端點A在鏡面中的像與鏡面上的標記重合,這時,測得李梅眼睛與地面的高度ED=1.6米,CD=2.2米,然后,在陽光下,小亮從D點沿DM方向走了29.4米,此時“石鼓閣”影子與小亮的影子頂端恰好重合,測得小亮身高1.7米,影長FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,測量時所使用的平面鏡的厚度忽略不計,請你根據(jù)題中提供的相關信息,求出“石鼓閣”的高AB的長度.25.(10分)某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機分選游戲雙方的組員,主持人設計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.26.(12分)已知△OAB在平面直角坐標系中的位置如圖所示.請解答以下問題:按要求作圖:先將△ABO繞原點O逆時針旋轉90°得△OA1B1,再以原點O為位似中心,將△OA1B1在原點異側按位似比2:1進行放大得到△OA2B2;直接寫出點A1的坐標,點A2的坐標.27.(12分)如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點A,與y軸交于點B,與反比例函數(shù)圖象的一個交點為M(﹣2,m).(1)求反比例函數(shù)的解析式;(2)求點B到直線OM的距離.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

科學記數(shù)法記數(shù)時,主要是準確把握標準形式a×10n即可.【詳解】解:78000000=7.8×107.故選C.科學記數(shù)法的形式是a×10n,其中1≤|a|<10,n是整數(shù),若這個數(shù)是大于10的數(shù),則n比這個數(shù)的整數(shù)位數(shù)少1.2、D【解析】

設AE=x,則AB=2x,由矩形的性質得出∠BAD=∠D=90°,CD=AB,證明△ADG是等腰直角三角形,得出AG=2AD=2,同理得出CD=AB=2x,CG=CD-DG=2x-1,CG=2GF,得出GF,即可得出結果.【詳解】設AE=x,

∵四邊形ABCD是矩形,

∴∠BAD=∠D=90°,CD=AB,∵AG平分∠BAD,∴∠DAG=45°,∴△ADG是等腰直角三角形,∴DG=AD=1,∴AG=2AD=2,同理:BE=AE=x,CD=AB=2x,∴CG=CD-DG=2x-1,同理:CG=2GF,∴FG=22∴AE-GF=x-(x-22)=2故選D.本題考查了矩形的性質、等腰直角三角形的判定與性質,勾股定理;熟練掌握矩形的性質和等腰直角三角形的性質,并能進行推理計算是解決問題的關鍵.3、C【解析】

先分別表示出小進和小俊跑800米的時間,再根據(jù)小進比小俊少用了40秒列出方程即可.【詳解】小進跑800米用的時間為秒,小俊跑800米用的時間為秒,∵小進比小俊少用了40秒,方程是,故選C.本題考查了列分式方程解應用題,能找出題目中的相等關系式是解此題的關鍵.4、D【解析】

∵在?ABCD中,AO=AC,∵點E是OA的中點,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴=,∵AD=BC,∴AF=AD,∴;故①正確;∵S△AEF=4,=()2=,∴S△BCE=36;故②正確;∵=,∴=,∴S△ABE=12,故③正確;∵BF不平行于CD,∴△AEF與△ADC只有一個角相等,∴△AEF與△ACD不一定相似,故④錯誤,故選D.5、C【解析】

連接,交于點設則根據(jù)△AMN的面積為4,列出方程求出的值,再計算半徑即可.【詳解】連接,交于點內切于正方形為的切線,經過點為等腰直角三角形,為的切線,設則△AMN的面積為4,則即解得故選:C.考查圓的切線的性質,等腰直角三角形的性質,三角形的面積公式,綜合性比較強.6、B【解析】

要使木條a與b平行,那么∠1=∠2,從而可求出木條a至少旋轉的度數(shù).【詳解】解:∵要使木條a與b平行,∴∠1=∠2,∴當∠1需變?yōu)?0o,∴木條a至少旋轉:70o-50o=20o.故選B.本題考查了旋轉的性質及平行線的性質:①兩直線平行同位角相等;②兩直線平行內錯角相等;③兩直線平行同旁內角互補;④夾在兩平行線間的平行線段相等.在運用平行線的性質定理時,一定要找準同位角,內錯角和同旁內角.7、B【解析】

科學計數(shù)法是a×,且,n為原數(shù)的整數(shù)位數(shù)減一.【詳解】解:35578=3.5578×,故選B.本題主要考查的是利用科學計數(shù)法表示較大的數(shù),屬于基礎題型.理解科學計數(shù)法的表示方法是解題的關鍵.8、B【解析】

利用一次函數(shù)的性質逐一進行判斷后即可得到正確的結論.【詳解】解:一次函數(shù)的圖象與y軸的交點在y軸的正半軸上,則,,若,則,故A錯誤;

把代入得,,則該函數(shù)圖象必經過點,故B正確;

當時,,,函數(shù)圖象過一二三象限,不過第四象限,故C錯誤;

函數(shù)圖象向上平移一個單位后,函數(shù)變?yōu)?,所以當時,,故函數(shù)圖象向上平移一個單位后,會與x軸負半軸有交點,故D錯誤,

故選B.本題考查了一次函數(shù)圖象上點的坐標特征、一次函數(shù)圖象與幾何變換,解題的關鍵是熟練掌握一次函數(shù)的性質,靈活應用這些知識解決問題,屬于中考??碱}型.9、A【解析】試題解析:試題解析:根據(jù)軸對稱圖形和中心對稱圖形的概念進行判斷可得:A、是軸對稱圖形,不是中心對稱圖形,故本選項符合題意;B、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;C、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;D、是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意.故選A.點睛:在同一平面內,如果把一個圖形繞某一點旋轉,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.這個旋轉點,就叫做對稱中心.10、C【解析】

根據(jù)相反數(shù)的定義即可求解.【詳解】-4的相反數(shù)是4,故選C.【點晴】此題主要考查相反數(shù),解題的關鍵是熟知相反數(shù)的定義.11、D【解析】

根據(jù)平均數(shù)、中位數(shù)、眾數(shù)和方差的定義逐一求解可得.【詳解】解:A、平均數(shù)為1+6+2+3+35B、重新排列為1、2、3、3、6,則中位數(shù)為3,正確;C、眾數(shù)為3,正確;D、方差為15×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2故選:D.本題考查了眾數(shù)、平均數(shù)、中位數(shù)、方差.平均數(shù)平均數(shù)表示一組數(shù)據(jù)的平均程度.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù));方差是用來衡量一組數(shù)據(jù)波動大小的量.12、C【解析】試題解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選C.考點:勾股定理.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、兩組對邊分別相等的四邊形是平行四邊形;平行四邊形對邊平行;兩點確定一條直線.【解析】

利用畫法得到PM=AB,BM=PA,則利用平行四邊形的判定方法判斷四邊形ABMP為平行四邊形,然后根據(jù)2平行四邊形的性質得到PM∥AB.【詳解】解:由作法得PM=AB,BM=PA,∴四邊形ABMP為平行四邊形,∴PM∥AB.故答案為:兩組對邊分別相等的四邊形是平行四邊形;平行四邊形對邊平行;兩點確定一條直線.本題考查基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了平行四邊形的判定與性質.14、圓形【解析】

根據(jù)竹籬笆的長度可知所圍成的正方形的邊長,進而可計算出所圍成的正方形的面積;根據(jù)圓的周長公式,可知所圍成的圓的半徑,進而將圓的面積計算出來,兩者進行比較.【詳解】圍成的圓形場地的面積較大.理由如下:設正方形的邊長為a,圓的半徑為R,∵竹籬笆的長度為48米,∴4a=48,則a=1.即所圍成的正方形的邊長為1;2π×R=48,∴R=,即所圍成的圓的半徑為,∴正方形的面積S1=a2=144,圓的面積S2=π×()2=,∵144<,∴圍成的圓形場地的面積較大.故答案為:圓形.此題主要考查實數(shù)的大小的比較在實際生活中的應用,所以學生在學這一部分時一定要聯(lián)系實際,不能死學.15、455【解析】

根據(jù)二次根式的性質即可求出答案.【詳解】①原式=4;②原式==5;③原式==5,故答案為:①4;②5;③5本題考查二次根式的性質,解題的關鍵是熟練運用二次根式的性質,本題屬于基礎題型.16、不合理,樣本數(shù)據(jù)不具有代表性【解析】

根據(jù)表中所取的樣本不具有代表性即可得到結論.【詳解】不合理,樣本數(shù)據(jù)不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).故答案為:不合理,樣本數(shù)據(jù)不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).本題考查了統(tǒng)計表,認真分析表中數(shù)據(jù)是解題的關鍵.17、3【解析】分析:因式分解,把已知整體代入求解.詳解:x2y+xy2=xy(x+y)=3.點睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時候,要注意整體換元法的靈活應用,訓練將一個式子看做一個整體,利用上述方法因式分解的能力.18、﹣1.【解析】

解:在實數(shù)﹣1、0、﹣1、1、中,最小的是﹣1,故答案為﹣1.本題考查實數(shù)大小比較.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)60、90°;(2)補全條形圖見解析;(3)估計全校學生中對這些交通法規(guī)“非常了解”的有320名;(4)甲和乙兩名學生同時被選中的概率為.【解析】【分析】(1)用A的人數(shù)以及所占的百分比就可以求出調查的總人數(shù),用C的人數(shù)除以調查的總人數(shù)后再乘以360度即可得;(2)根據(jù)D的百分比求出D的人數(shù),繼而求出B的人數(shù),即可補全條形統(tǒng)計圖;(3)用“非常了解”所占的比例乘以800即可求得;(4)畫樹狀圖得到所有可能的情況,然后找出符合條件的情況用,利用概率公式進行求解即可得.【詳解】(1)本次調查的學生總人數(shù)為24÷40%=60人,扇形統(tǒng)計圖中C所對應扇形的圓心角度數(shù)是360°×=90°,故答案為60、90°;(2)D類型人數(shù)為60×5%=3,則B類型人數(shù)為60﹣(24+15+3)=18,補全條形圖如下:(3)估計全校學生中對這些交通法規(guī)“非常了解”的有800×40%=320名;(4)畫樹狀圖為:共有12種等可能的結果數(shù),其中甲和乙兩名學生同時被選中的結果數(shù)為2,所以甲和乙兩名學生同時被選中的概率為.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖、列表法或樹狀圖法求概率、用樣本估計總體等,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中找到必要的有關聯(lián)的信息進行解題是關鍵.20、(1)50;4;5;畫圖見解析;(2)144°;(3)64【解析】

(1)根據(jù)統(tǒng)計圖可知,課外閱讀達3小時的共10人,占總人數(shù)的20%,由此可得出總人數(shù);求出課外閱讀時間4小時與6小時男生的人數(shù),再根據(jù)中位數(shù)與眾數(shù)的定義即可得出結論;根據(jù)求出的人數(shù)補全條形統(tǒng)計圖即可;

(2)求出課外閱讀時間為5小時的人數(shù),再求出其人數(shù)與總人數(shù)的比值即可得出扇形的圓心角度數(shù);

(3)求出總人數(shù)與課外閱讀時間為6小時的學生人數(shù)的百分比的積即可.【詳解】解:(1)∵課外閱讀達3小時的共10人,占總人數(shù)的20%,∴=50(人).∵課外閱讀4小時的人數(shù)是32%,∴50×32%=16(人),∴男生人數(shù)=16﹣8=8(人);∴課外閱讀6小時的人數(shù)=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),∴課外閱讀3小時的是10人,4小時的是16人,5小時的是20人,6小時的是4人,∴中位數(shù)是4小時,眾數(shù)是5小時.補全圖形如圖所示.故答案為50,4,5;(2)∵課外閱讀5小時的人數(shù)是20人,∴×360°=144°.故答案為144°;(3)∵課外閱讀6小時的人數(shù)是4人,∴800×=64(人).答:九年級一周課外閱讀時間為6小時的學生大約有64人.本題考查了統(tǒng)計圖與中位數(shù)、眾數(shù)的知識點,解題的關鍵是熟練的掌握中位數(shù)與眾數(shù)的定義與根據(jù)題意作圖.21、(1)500,12,32;(2)補圖見解析;(3)該市大約有32000人對“社會主義核心價值觀”達到“A.非常了解”的程度.【解析】

(1)根據(jù)項目B的人數(shù)以及百分比,即可得到這次調查的市民人數(shù),據(jù)此可得項目A,C的百分比;(2)根據(jù)對“社會主義核心價值觀”達到“A.非常了解”的人數(shù)為:32%×500=160,補全條形統(tǒng)計圖;(3)根據(jù)全市總人數(shù)乘以A項目所占百分比,即可得到該市對“社會主義核心價值觀”達到“A非常了解”的程度的人數(shù).【詳解】試題分析:試題解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)對“社會主義核心價值觀”達到“A.非常了解”的人數(shù)為:32%×500=160,補全條形統(tǒng)計圖如下:(3)100000×32%=32000(人),答:該市大約有32000人對“社會主義核心價值觀”達到“A.非常了解”的程度.22、(1)見解析;(2).【解析】

(1)連接OD,根據(jù)切線的判定方法即可求出答案;(2)由于OD∥AC,點O是AB的中點,從而可知OD為△ABC的中位線,在Rt△CDE中,∠C=60°,CE=CD=1,所以AE=AC?CE=4?1=3,在Rt△AEF中,所以EF=AE?sinA=3×sin60°=.【詳解】(1)連接OD,∵△ABC是等邊三角形,∴∠C=∠A=∠B=60°,∵OD=OB,∴△ODB是等邊三角形,∴∠ODB=60°∴∠ODB=∠C,∴OD∥AC,∴DE⊥AC∴OD⊥DE,∴DE是⊙O的切線(2)∵OD∥AC,點O是AB的中點,∴OD為△ABC的中位線,∴BD=CD=2在Rt△CDE中,∠C=60°,∴∠CDE=30°,∴CE=CD=1∴AE=AC﹣CE=4﹣1=3在Rt△AEF中,∠A=60°,∴EF=AE?sinA=3×sin60°=本題考查圓的綜合問題,涉及切線的判定,銳角三角函數(shù),含30度角的直角三角形的性質,等邊三角形的性質,本題屬于中等題型.23、(1)24,1;(2)54;(3)360.【解析】

(1)根據(jù)選擇乒乓球運動的人數(shù)是36人,對應的百分比是30%,即可求得總人數(shù),然后利用百分比的定義求得a,用總人數(shù)減去其它組的人數(shù)求得b;(2)利用360°乘以對應的百分比即可求得;(3)求得全??側藬?shù),然后利用總人數(shù)乘以對應的百分比求解.【詳解】(1)抽取的人數(shù)是36÷30%=120(人),則a=120×20%=24,b=120﹣30﹣24﹣36﹣12=1.故答案是:24,1;(2)“排球”所在的扇形的圓心角為360°×=54°,故答案是:54;(3)全??側藬?shù)是120÷10%=1200(人),則選擇參加乒乓球運動的人數(shù)是1200×30%=360(人).24、“石鼓閣”的高AB的長度

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論