版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河北省唐山市龍泉中學(xué)2024年中考聯(lián)考數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉(zhuǎn)一定角度后,點B′恰好與點C重合,則平移的距離和旋轉(zhuǎn)角的度數(shù)分別為()A.4,30° B.2,60° C.1,30° D.3,60°2.對于數(shù)據(jù):6,3,4,7,6,0,1.下列判斷中正確的是()A.這組數(shù)據(jù)的平均數(shù)是6,中位數(shù)是6 B.這組數(shù)據(jù)的平均數(shù)是6,中位數(shù)是7C.這組數(shù)據(jù)的平均數(shù)是5,中位數(shù)是6 D.這組數(shù)據(jù)的平均數(shù)是5,中位數(shù)是73.下列運算正確的是()A.6-3=3B.-32=﹣3C.a(chǎn)?a2=a2D.(2a4.菱形ABCD中,對角線AC、BD相交于點O,H為AD邊中點,菱形ABCD的周長為28,則OH的長等于()A.3.5 B.4 C.7 D.145.據(jù)報道,南寧創(chuàng)客城已于2015年10月開城,占地面積約為14400平方米,目前已引進(jìn)創(chuàng)業(yè)團(tuán)隊30多家,將14400用科學(xué)記數(shù)法表示為()A.14.4×103 B.144×102 C.1.44×104 D.1.44×10﹣46.二次函數(shù)的圖象如圖所示,則下列各式中錯誤的是()A.a(chǎn)bc>0 B.a(chǎn)+b+c>0 C.a(chǎn)+c>b D.2a+b=07.估計-1的值在()A.0到1之間 B.1到2之間 C.2到3之間 D.3至4之間8.下列圖形中,可以看作中心對稱圖形的是()A. B. C. D.9.已知a,b,c在數(shù)軸上的位置如圖所示,化簡|a+c|-|a-2b|-|c+2b|的結(jié)果是()A.4b+2c B.0 C.2c D.2a+2c10.青藏高原是世界上海拔最高的高原,它的面積是2500000平方千米.將2500000用科學(xué)記數(shù)法表示應(yīng)為()A. B. C. D.11.如圖,點P(x,y)(x>0)是反比例函數(shù)y=(k>0)的圖象上的一個動點,以點P為圓心,OP為半徑的圓與x軸的正半軸交于點A,若△OPA的面積為S,則當(dāng)x增大時,S的變化情況是()A.S的值增大 B.S的值減小C.S的值先增大,后減小 D.S的值不變12.如圖,正方形ABCD中,對角線AC、BD交于點O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結(jié)論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有()個.A.2 B.3 C.4 D.5二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在△ABC中,∠C=90°,AC=3,BC=4,點D,E,F分別是邊AB,AC,BC的中點,則14.如圖,在平行四邊形ABCD中,AB<AD,∠D=30°,CD=4,以AB為直徑的⊙O交BC于點E,則陰影部分的面積為_____.15.如圖,點A為函數(shù)y=(x>0)圖象上一點,連接OA,交函數(shù)y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△ABC的面積為______.16.使有意義的x的取值范圍是______.17.如圖,邊長為6的菱形ABCD中,AC是其對角線,∠B=60°,點P在CD上,CP=2,點M在AD上,點N在AC上,則△PMN的周長的最小值為_____________.18.如圖,在△ABC中,AB≠AC.D,E分別為邊AB,AC上的點.AC=3AD,AB=3AE,點F為BC邊上一點,添加一個條件:______,可以使得△FDB與△ADE相似.(只需寫出一個)
三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知:,,,求證:.20.(6分)如圖,分別與相切于點,點在上,且,,垂足為.求證:;若的半徑,,求的長21.(6分)如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.求證:△AEC≌△BED;若∠1=40°,求∠BDE的度數(shù).22.(8分)如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB,于點E求證:△ACD≌△AED;若∠B=30°,CD=1,求BD的長.23.(8分)為了解中學(xué)生“平均每天體育鍛煉時間”的情況,某地區(qū)教育部門隨機調(diào)查了若干名中學(xué)生,根據(jù)調(diào)查結(jié)果制作統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:(1)本次接受隨機抽樣調(diào)查的中學(xué)生人數(shù)為_______,圖①中m的值是_____;(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)根據(jù)統(tǒng)計數(shù)據(jù),估計該地區(qū)250000名中學(xué)生中,每天在校體育鍛煉時間大于等于1.5h的人數(shù).24.(10分)某一天,水果經(jīng)營戶老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,后再到水果市場去賣,已知獼猴桃和芒果當(dāng)天的批發(fā)價和零售價如表所示:品名獼猴桃芒果批發(fā)價元千克2040零售價元千克2650他購進(jìn)的獼猴桃和芒果各多少千克?如果獼猴桃和芒果全部賣完,他能賺多少錢?25.(10分)()如圖①已知四邊形中,,BC=b,,求:①對角線長度的最大值;②四邊形的最大面積;(用含,的代數(shù)式表示)()如圖②,四邊形是某市規(guī)劃用地的示意圖,經(jīng)測量得到如下數(shù)據(jù):,,,,請你利用所學(xué)知識探索它的最大面積(結(jié)果保留根號)26.(12分)如圖,足球場上守門員在處開出一高球,球從離地面1米的處飛出(在軸上),運動員乙在距點6米的處發(fā)現(xiàn)球在自己頭的正上方達(dá)到最高點,距地面約4米高,球落地后又一次彈起.據(jù)實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.求足球開始飛出到第一次落地時,該拋物線的表達(dá)式.足球第一次落地點距守門員多少米?(?。┻\動員乙要搶到第二個落點,他應(yīng)再向前跑多少米?27.(12分)為了進(jìn)一步改善環(huán)境,鄭州市今年增加了綠色自行車的數(shù)量,已知A型號的自行車比B型號的自行車的單價低30元,買8輛A型號的自行車與買7輛B型號的自行車所花費用相同.
(1)A,B兩種型號的自行車的單價分別是多少?
(2)若購買A,B兩種自行車共600輛,且A型號自行車的數(shù)量不多于B型號自行車的一半,請你給出一種最省錢的方案,并求出該方案所需要的費用.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題分析:∵∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉(zhuǎn)一定角度后,點B′恰好與點C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等邊三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距離和旋轉(zhuǎn)角的度數(shù)分別為:2,60°故選B.考點:1、平移的性質(zhì);2、旋轉(zhuǎn)的性質(zhì);3、等邊三角形的判定2、C【解析】
根據(jù)題目中的數(shù)據(jù)可以按照從小到大的順序排列,從而可以求得這組數(shù)據(jù)的平均數(shù)和中位數(shù).【詳解】對于數(shù)據(jù):6,3,4,7,6,0,1,這組數(shù)據(jù)按照從小到大排列是:0,3,4,6,6,7,1,這組數(shù)據(jù)的平均數(shù)是:中位數(shù)是6,故選C.【點睛】本題考查了平均數(shù)、中位數(shù)的求法,解決本題的關(guān)鍵是明確它們的意義才會計算,求平均數(shù)是用一組數(shù)據(jù)的和除以這組數(shù)據(jù)的個數(shù);中位數(shù)的求法分兩種情況:把一組數(shù)據(jù)從小到大排成一列,正中間如果是一個數(shù),這個數(shù)就是中位數(shù),如果正中間是兩個數(shù),那中位數(shù)是這兩個數(shù)的平均數(shù).3、D【解析】試題解析:A.6與3不是同類二次根式,不能合并,故該選項錯誤;B.(-3)2C.a?aD.(2a故選D.4、A【解析】
根據(jù)菱形的四條邊都相等求出AB,菱形的對角線互相平分可得OB=OD,然后判斷出OH是△ABD的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得OHAB.【詳解】∵菱形ABCD的周長為28,∴AB=28÷4=7,OB=OD.∵H為AD邊中點,∴OH是△ABD的中位線,∴OHAB7=3.1.故選A.【點睛】本題考查了菱形的對角線互相平分的性質(zhì),三角形的中位線平行于第三邊并且等于第三邊的一半,熟記性質(zhì)與定理是解題的關(guān)鍵.5、C【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值大于10時,n是正數(shù);當(dāng)原數(shù)的絕對值小于1時,n是負(fù)數(shù).【詳解】14400=1.44×1.故選C.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.6、B【解析】
根據(jù)二次函數(shù)的圖象與性質(zhì)逐一判斷即可.【詳解】解:由圖象可知拋物線開口向上,∴,∵對稱軸為,∴,∴,∴,故D正確,又∵拋物線與y軸交于y軸的負(fù)半軸,∴,∴,故A正確;當(dāng)x=1時,,即,故B錯誤;當(dāng)x=-1時,即,∴,故C正確,故答案為:B.【點睛】本題考查了二次函數(shù)圖象與系數(shù)之間的關(guān)系,解題的關(guān)鍵是熟練掌握二次函數(shù)各系數(shù)的意義以及二次函數(shù)的圖象與性質(zhì).7、B【解析】試題分析:∵2<<3,∴1<-1<2,即-1在1到2之間,故選B.考點:估算無理數(shù)的大小.8、B【解析】
根據(jù)中心對稱圖形的概念求解.【詳解】解:A、不是中心對稱圖形,故此選項錯誤;
B、是中心對稱圖形,故此選項正確;
C、不是中心對稱圖形,故此選項錯誤;
D、不是中心對稱圖形,故此選項錯誤.
故選:B.【點睛】此題主要考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.9、A【解析】由數(shù)軸上點的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a?2b>0,c+2b<0,則原式=a+c?a+2b+c+2b=4b+2c.故選:B.點睛:本題考查了整式的加減以及數(shù)軸,涉及的知識有:去括號法則以及合并同類項法則,熟練掌握運算法則是解本題的關(guān)鍵.10、C【解析】分析:在實際生活中,許多比較大的數(shù),我們習(xí)慣上都用科學(xué)記數(shù)法表示,使書寫、計算簡便.解答:解:根據(jù)題意:2500000=2.5×1.故選C.11、D【解析】
作PB⊥OA于B,如圖,根據(jù)垂徑定理得到OB=AB,則S△POB=S△PAB,再根據(jù)反比例函數(shù)k的幾何意義得到S△POB=|k|,所以S=2k,為定值.【詳解】作PB⊥OA于B,如圖,則OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值為定值.故選D.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.12、C【解析】
根據(jù)AF是∠BAC的平分線,BH⊥AF,可證AF為BG的垂直平分線,然后再根據(jù)正方形內(nèi)角及角平分線進(jìn)行角度轉(zhuǎn)換證明EG=EB,F(xiàn)G=FB,即可判定②選項;設(shè)OA=OB=OC=a,菱形BEGF的邊長為b,由四邊形BEGF是菱形轉(zhuǎn)換得到CF=GF=BF,由四邊形ABCD是正方形和角度轉(zhuǎn)換證明△OAE≌△OBG,即可判定①;則△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的關(guān)系式,再由△PGC∽△BGA,得到=1+,從而判斷得出④;得出∠EAB=∠GBC從而證明△EAB≌△GBC,即可判定③;證明△FAB≌△PBC得到BF=CP,即可求出,從而判斷⑤.【詳解】解:∵AF是∠BAC的平分線,∴∠GAH=∠BAH,∵BH⊥AF,∴∠AHG=∠AHB=90°,在△AHG和△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是線段BG的垂直平分線,∴EG=EB,F(xiàn)G=FB,∵四邊形ABCD是正方形,∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四邊形BEGF是菱形;②正確;設(shè)OA=OB=OC=a,菱形BEGF的邊長為b,∵四邊形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,∠CGF=90°,∴CF=GF=BF,∵四邊形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°,∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠OAE=∠OBG,在△OAE和△OBG中,∴△OAE≌△OBG(ASA),①正確;∴OG=OE=a﹣b,∴△GOE是等腰直角三角形,∴GE=OG,∴b=(a﹣b),整理得a=b,∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,∵四邊形ABCD是正方形,∴PC∥AB,∴===1+,∵△OAE≌△OBG,∴AE=BG,∴=1+,∴==1﹣,④正確;∵∠OAE=∠OBG,∠CAB=∠DBC=45°,∴∠EAB=∠GBC,在△EAB和△GBC中,∴△EAB≌△GBC(ASA),∴BE=CG,③正確;在△FAB和△PBC中,∴△FAB≌△PBC(ASA),∴BF=CP,∴====,⑤錯誤;綜上所述,正確的有4個,故選:C.【點睛】本題綜合考查了全等三角形的判定與性質(zhì),相似三角形,菱形的判定與性質(zhì)等四邊形的綜合題.該題難度較大,需要學(xué)生對有關(guān)于四邊形的性質(zhì)的知識有一系統(tǒng)的掌握.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、6【解析】
首先利用勾股定理求得斜邊長,然后利用三角形中位線定理求得答案即可.【詳解】解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB=AC2+B∵點D、E、F分別是邊AB、AC、BC的中點,∴DE=12BC,DF=12AC,EF=∴C△DEF=DE+DF+EF=12BC+12AC+12AB=1故答案為:6.【點睛】本題考查了勾股定理和三角形中位線定理.14、【解析】【分析】連接半徑和弦AE,根據(jù)直徑所對的圓周角是直角得:∠AEB=90°,繼而可得AE和BE的長,所以圖中弓形的面積為扇形OBE的面積與△OBE面積的差,因為OA=OB,所以△OBE的面積是△ABE面積的一半,可得結(jié)論.【詳解】如圖,連接OE、AE,∵AB是⊙O的直徑,∴∠AEB=90°,∵四邊形ABCD是平行四邊形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S陰影=S扇形OBE﹣S△BOE==,故答案為.【點睛】本題考查了扇形的面積計算、平行四邊形的性質(zhì),含30度角的直角三角形的性質(zhì)等,求出扇形OBE的面積和△ABE的面積是解本題的關(guān)鍵.15、6.【解析】
作輔助線,根據(jù)反比例函數(shù)關(guān)系式得:S△AOD=,S△BOE=,再證明△BOE∽△AOD,由性質(zhì)得OB與OA的比,由同高兩三角形面積的比等于對應(yīng)底邊的比可以得出結(jié)論.【詳解】如圖,分別作BE⊥x軸,AD⊥x軸,垂足分別為點E、D,∴BE∥AD,
∴△BOE∽△AOD,
∴,
∵OA=AC,
∴OD=DC,
∴S△AOD=S△ADC=S△AOC,
∵點A為函數(shù)y=(x>0)的圖象上一點,
∴S△AOD=,
同理得:S△BOE=,
∴,
∴,
∴,
∴,
∴,
故答案為6.16、【解析】二次根式有意義的條件.【分析】根據(jù)二次根式被開方數(shù)必須是非負(fù)數(shù)的條件,要使在實數(shù)范圍內(nèi)有意義,必須.17、2【解析】
過P作關(guān)于AC和AD的對稱點,連接和,過P作,和,M,N共線時最短,根據(jù)對稱性得知△PMN的周長的最小值為.因為四邊形ABCD是菱形,AD是對角線,可以求得,根據(jù)特殊三角形函數(shù)值求得,,再根據(jù)線段相加勾股定理即可求解.【詳解】過P作關(guān)于AC和AD的對稱點,連接和,過P作,四邊形ABCD是菱形,AD是對角線,,,,,又由題意得【點睛】本題主要考查對稱性質(zhì),菱形性質(zhì),內(nèi)角和定理和勾股定理,熟悉掌握定理是關(guān)鍵.18、或【解析】因為,,,所以,欲使與相似,只需要與相似即可,則可以添加的條件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.【方法點睛】在解決本題目,直接處理與,無從下手,沒有公共邊或者公共角,稍作轉(zhuǎn)化,通過,與相似.這時,柳暗花明,迎刃而解.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、證明見解析;【解析】
根據(jù)HL定理證明Rt△ABC≌Rt△DEF,根據(jù)全等三角形的性質(zhì)證明即可.【詳解】,BE為公共線段,∴CE+BE=BF+BE,即又,在與中,≌∴AC=DF.【點睛】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.20、(1)見解析(2)5【解析】
解:(1)證明:如圖,連接,則.∵,∴.∵,∴四邊形是平行四邊形.∴.(2)連接,則.∵,,,∴,.∴.∴.設(shè),則.在中,有.∴.即.21、(1)見解析;(1)70°.【解析】
(1)根據(jù)全等三角形的判定即可判斷△AEC≌△BED;
(1)由(1)可知:EC=ED,∠C=∠BDE,根據(jù)等腰三角形的性質(zhì)即可知∠C的度數(shù),從而可求出∠BDE的度數(shù).【詳解】證明:(1)∵AE和BD相交于點O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠1.又∵∠1=∠1,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,∴△AEC≌△BED(ASA).(1)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,∴∠BDE=∠C=70°.【點睛】本題考查了全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì).22、(1)見解析(2)BD=2【解析】解:(1)證明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°.∵在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL).(2)∵Rt△ACD≌Rt△AED,CD=1,∴DC=DE=1.∵DE⊥AB,∴∠DEB=90°.∵∠B=30°,∴BD=2DE=2.(1)根據(jù)角平分線性質(zhì)求出CD=DE,根據(jù)HL定理求出另三角形全等即可.(2)求出∠DEB=90°,DE=1,根據(jù)含30度角的直角三角形性質(zhì)求出即可.23、(1)250、12;(2)平均數(shù):1.38h;眾數(shù):1.5h;中位數(shù):1.5h;(3)160000人;【解析】
(1)根據(jù)題意,本次接受調(diào)查的學(xué)生總?cè)藬?shù)為各個金額人數(shù)之和,用總概率減去其他金額的概率即可求得m值.(2)平均數(shù)為一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以這組數(shù)據(jù)的個數(shù);眾數(shù)是在一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù);中位數(shù)是將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù),或是最中間兩個數(shù)據(jù)的平均數(shù),據(jù)此求解即可.(3)根據(jù)樣本估計總體,用“每天在校體育鍛煉時間大于等于1.5h的人數(shù)”的概率乘以全???cè)藬?shù)求解即可.【詳解】(1)本次接受隨機抽樣調(diào)查的中學(xué)生人數(shù)為60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案為250、12;(2)平均數(shù)為=1.38(h),眾數(shù)為1.5h,中位數(shù)為=1.5h;(3)估計每天在校體育鍛煉時間大于等于1.5h的人數(shù)約為250000×=160000人.【點睛】本題主要考查數(shù)據(jù)的收集、處理以及統(tǒng)計圖表.24、(1)購進(jìn)獼猴桃20千克,購進(jìn)芒果30千克;(2)能賺420元錢.【解析】
設(shè)購進(jìn)獼猴桃x千克,購進(jìn)芒果y千克,由總價單價數(shù)量結(jié)合老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;根據(jù)利潤銷售收入成本,即可求出結(jié)論.【詳解】設(shè)購進(jìn)獼猴桃x千克,購進(jìn)芒果y千克,根據(jù)題意得:,解得:.答:購進(jìn)獼猴桃20千克,購進(jìn)芒果30千克.元.答:如果獼猴桃和芒果全部賣完,他能賺420元錢.【點睛】本題考查了二元一次方程組的應(yīng)用,解題的關(guān)鍵是:找準(zhǔn)等量關(guān)系,正確列出二元一次方程組;根據(jù)數(shù)量關(guān)系,列式計算.25、(1)①;②;(2)150+475+475.【解析】
(1)①由條件可知AC為直徑,可知BD長度的最大值為AC的長,可求得答案;②連接AC,求得AD2+CD2,利用不等式的性質(zhì)可求得AD?CD的最大值,從而可求得四邊形ABCD面積的最大值;(2)連接AC,延長CB,過點A做AE⊥CB交CB的延長線于E,可先求得△ABC的面積,結(jié)合條件可求得∠D=45°,且A、C、D三點共圓,作AC、CD中垂線,交點即為圓心O,當(dāng)點D與AC的距離最大時,△ACD的面積最大,AC的中垂線交圓O于點D',交AC于F,F(xiàn)D'即為所求最大值,再求得
△ACD′的面積即可.【詳解】(1)①因為∠B=∠D=90°,所以四邊形ABCD是圓內(nèi)接四邊形,AC為圓的直徑,則BD長度的最大值為AC,此時BD=,②連接AC,則AC2=AB2+BC2=a2+b2=AD2+CD2,S△ACD=ADCD≤(AD2+CD2)=(a2+b2),所以四邊形ABCD的最大面積=(a2+b2)+ab=;(2)如圖,連接AC,延長CB,過點A作AE⊥CB交CB的延長線于E,因為AB=20,∠ABE=180°-∠ABC=60°,所以AE=ABsin60°=10,EB=ABcos60°=10,S△ABC=AEBC=150,因為BC=30,所以EC=EB+BC=40,AC==10,因為∠ABC=120°,∠BAD+∠BCD=195°,所以∠D=45°,則△ACD中,∠D為定角,對邊AC為定邊,所以,A、C、D點在同一個圓上,做AC、CD中垂線,交點即為圓O,如圖,當(dāng)點D與A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年消防工程維保及消防安全教育培訓(xùn)合同2篇
- 二零二五版美發(fā)沙龍與發(fā)型師勞動合同范本(含職業(yè)規(guī)劃)3篇
- 2025年度特種車輛租賃及操作培訓(xùn)服務(wù)合同3篇
- 二零二四南通國際會展中心場地租賃及配套設(shè)施合同3篇
- 二零二五版電商數(shù)據(jù)分析與優(yōu)化代運營合同3篇
- 年度客運用車市場分析及競爭策略分析報告
- 2024-2025學(xué)年高中歷史第二單元中國古代文藝長廊第7課漢字與書法課時作業(yè)含解析岳麓版必修3
- 2024-2025學(xué)年高中歷史第6單元辛亥革命與中華民國的建立第20課北洋軍閥統(tǒng)治時期的政治經(jīng)濟(jì)與文化經(jīng)典題集錦含解析新人教版必修中外歷史綱要上
- 2024音樂人授權(quán)影視作品使用其音樂合同
- 二零二四年度4S店租賃期內(nèi)合同解除與違約金協(xié)議
- 氣管切開患者氣道濕化的護(hù)理進(jìn)展資料 氣管切開患者氣道濕化
- 管理模板:某跨境電商企業(yè)組織結(jié)構(gòu)及部門職責(zé)
- 底架總組裝工藝指導(dǎo)書
- 簡單臨時工勞動合同模板(3篇)
- 聚酯合成反應(yīng)動力學(xué)
- 自動控制原理全套課件
- 上??萍即髮W(xué),面試
- 《五年級奧數(shù)總復(fù)習(xí)》精編課件
- TS2011-16 帶式輸送機封閉棧橋圖集
- 礦區(qū)道路工程施工組織設(shè)計方案
- 多聯(lián)機的施工方案與技術(shù)措施
評論
0/150
提交評論