湖南省長沙麓山國際實驗校2023-2024學年中考數(shù)學最后沖刺模擬試卷含解析_第1頁
湖南省長沙麓山國際實驗校2023-2024學年中考數(shù)學最后沖刺模擬試卷含解析_第2頁
湖南省長沙麓山國際實驗校2023-2024學年中考數(shù)學最后沖刺模擬試卷含解析_第3頁
湖南省長沙麓山國際實驗校2023-2024學年中考數(shù)學最后沖刺模擬試卷含解析_第4頁
湖南省長沙麓山國際實驗校2023-2024學年中考數(shù)學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省長沙麓山國際實驗校2023-2024學年中考數(shù)學最后沖刺模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算中,正確的是()A. B. C. D.2.左下圖是一些完全相同的小正方體搭成的幾何體的三視圖.這個幾何體只能是()A. B. C. D.3.學習全等三角形時,數(shù)學興趣小組設計并組織了“生活中的全等”的比賽,全班同學的比賽結果統(tǒng)計如下表:得分(分)60708090100人數(shù)(人)7121083則得分的眾數(shù)和中位數(shù)分別為()A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分4.用五個完全相同的小正方體組成如圖所示的立體圖形,從正面看到的圖形是()A. B. C. D.5.在數(shù)軸上到原點距離等于3的數(shù)是()A.3 B.﹣3 C.3或﹣3 D.不知道6.實數(shù)a,b在數(shù)軸上的位置如圖所示,以下說法正確的是()A.a+b=0 B.b<a C.ab>0 D.|b|<|a|7.不等式組1-x≤0,3x-6<0A. B. C. D.8.某校為了了解七年級女同學的800米跑步情況,隨機抽取部分女同學進行800米跑測試,按照成績分為優(yōu)秀、良好、合格、不合格四個等級,繪制了如圖所示統(tǒng)計圖.該校七年級有400名女生,則估計800米跑不合格的約有()A.2人 B.16人C.20人 D.40人9.某校舉行運動會,從商場購買一定數(shù)量的筆袋和筆記本作為獎品.若每個筆袋的價格比每個筆記本的價格多3元,且用200元購買筆記本的數(shù)量與用350元購買筆袋的數(shù)量相同.設每個筆記本的價格為x元,則下列所列方程正確的是()A. B. C. D.10.已知拋物線y=ax2﹣(2a+1)x+a﹣1與x軸交于A(x1,0),B(x2,0)兩點,若x1<1,x2>2,則a的取值范圍是()A.a<3 B.0<a<3 C.a>﹣3 D.﹣3<a<0二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在矩形ABCD中,AB=2,AD=6,E.F分別是線段AD,BC上的點,連接EF,使四邊形ABFE為正方形,若點G是AD上的動點,連接FG,將矩形沿FG折疊使得點C落在正方形ABFE的對角線所在的直線上,對應點為P,則線段AP的長為______.12.用正三角形、正四邊形和正六邊形按如圖所示的規(guī)律拼圖案,即從第二個圖案開始,每個圖案中正三角形的個數(shù)都比上一個圖案中正三角形的個數(shù)多4個,則第n個圖案中正三角形的個數(shù)為(用含n的代數(shù)式表示).13.如圖,在正方形網格中,線段A′B′可以看作是線段AB經過若干次圖形的變化(平移、旋轉、軸對稱)得到的,寫出一種由線段AB得到線段A′B′的過程______14.如圖,某數(shù)學興趣小組為了測量河對岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.15.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三點都在y=的圖象上,則yl,y2,y3的大小關系是_____.(用“<”號填空)16.如圖,線段AB是⊙O的直徑,弦CD⊥AB,AB=8,∠CAB=22.5°,則CD的長等于___________________________.17.函數(shù)y=1x-1的自變量x的取值范圍是三、解答題(共7小題,滿分69分)18.(10分)如圖,AE∥FD,AE=FD,B、C在直線EF上,且BE=CF,(1)求證:△ABE≌△DCF;(2)試證明:以A、B、D、C為頂點的四邊形是平行四邊形.19.(5分)如圖,在四邊形中,為的中點,于點,,,,求的度數(shù).20.(8分)閱讀下列材料:題目:如圖,在△ABC中,已知∠A(∠A<45°),∠C=90°,AB=1,請用sinA、cosA表示sin2A.21.(10分)如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=1.(1)求拋物線的解析式及點D的坐標;(2)連接BD,F(xiàn)為拋物線上一動點,當∠FAB=∠EDB時,求點F的坐標;(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當點P在x軸上,且PQ=MN時,求菱形對角線MN的長.22.(10分)如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點,過C作CD⊥AB于點D,CD交AE于點F,過C作CG∥AE交BA的延長線于點G.求證:CG是⊙O的切線.求證:AF=CF.若sinG=0.6,CF=4,求GA的長.23.(12分)已知,關于x的一元二次方程(k﹣1)x2+x+3=0有實數(shù)根,求k的取值范圍.24.(14分)我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;如圖2,點P是四邊形ABCD內一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)積的乘方、合并同類項、同底數(shù)冪的除法以及冪的乘方進行計算即可.【詳解】A、(2a)3=8a3,故本選項錯誤;B、a3+a2不能合并,故本選項錯誤;C、a8÷a4=a4,故本選項錯誤;D、(a2)3=a6,故本選項正確;故選D.【點睛】本題考查了積的乘方、合并同類項、同底數(shù)冪的除法以及冪的乘方,掌握運算法則是解題的關鍵.2、A【解析】試題分析:根據(jù)幾何體的主視圖可判斷C不合題意;根據(jù)左視圖可得B、D不合題意,因此選項A正確,故選A.考點:幾何體的三視圖3、C【解析】

解:根據(jù)表格中的數(shù)據(jù),可知70出現(xiàn)的次數(shù)最多,可知其眾數(shù)為70分;把數(shù)據(jù)按從小到大排列,可知其中間的兩個的平均數(shù)為80分,故中位數(shù)為80分.故選C.【點睛】本題考查數(shù)據(jù)分析.4、A【解析】從正面看第一層是三個小正方形,第二層左邊一個小正方形,故選:A.5、C【解析】

根據(jù)數(shù)軸上到原點距離等于3的數(shù)為絕對值是3的數(shù)即可求解.【詳解】絕對值為3的數(shù)有3,-3.故答案為C.【點睛】本題考查數(shù)軸上距離的意義,解題的關鍵是知道數(shù)軸上的點到原點的距離為絕對值.6、D【解析】

根據(jù)圖形可知,a是一個負數(shù),并且它的絕對是大于1小于2,b是一個正數(shù),并且它的絕對值是大于0小于1,即可得出|b|<|a|.【詳解】A選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),但表示它們的點到原點的距離不相等,所以它們不互為相反數(shù),和不為0,故A錯誤;B選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),而正數(shù)都大于負數(shù),故B錯誤;C選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),而異號兩數(shù)相乘積為負,負數(shù)都小于0,故C錯誤;D選項:由圖中信息可知,表示實數(shù)a的點到原點的距離大于表示實數(shù)b的點到原點的距離,而在數(shù)軸上表示一個數(shù)的點到原點的距離越遠其絕對值越大,故D正確.∴選D.7、D【解析】試題分析:1-x≤0①3x-6<0②,由①得:x≥1,由②得:x<2,在數(shù)軸上表示不等式的解集是:,故選D.考點:1.在數(shù)軸上表示不等式的解集;2.解一元一次不等式組.8、C【解析】

先求出800米跑不合格的百分率,再根據(jù)用樣本估計總體求出估值.【詳解】400×人.故選C.【點睛】考查了頻率分布直方圖,以及用樣本估計總體,關鍵是從上面可得到具體的值.9、B【解析】試題分析:設每個筆記本的價格為x元,根據(jù)“用200元購買筆記本的數(shù)量與用350元購買筆袋的數(shù)量相同”這一等量關系列出方程即可.考點:由實際問題抽象出分式方程10、B【解析】由已知拋物線求出對稱軸,解:拋物線:,對稱軸,由判別式得出a的取值范圍.,,∴,①,.②由①②得.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、1或1﹣2【解析】

當點P在AF上時,由翻折的性質可求得PF=FC=1,然后再求得正方形的對角線AF的長,從而可得到PA的長;當點P在BE上時,由正方形的性質可知BP為AF的垂直平分線,則AP=PF,由翻折的性質可求得PF=FC=1,故此可得到AP的值.【詳解】解:如圖1所示:由翻折的性質可知PF=CF=1,∵ABFE為正方形,邊長為2,∴AF=2.∴PA=1﹣2.如圖2所示:由翻折的性質可知PF=FC=1.∵ABFE為正方形,∴BE為AF的垂直平分線.∴AP=PF=1.故答案為:1或1﹣2.【點睛】本題主要考查的是翻折的性質、正方形的性質的應用,根據(jù)題意畫出符合題意的圖形是解題的關鍵.12、4n+1【解析】

分析可知規(guī)律是每個圖案中正三角形的個數(shù)都比上一個圖案中正三角形的個數(shù)多4個.【詳解】解:第一個圖案正三角形個數(shù)為6=1+4;第二個圖案正三角形個數(shù)為1+4+4=1+1×4;第三個圖案正三角形個數(shù)為1+1×4+4=1+3×4;…;第n個圖案正三角形個數(shù)為1+(n﹣1)×4+4=1+4n=4n+1.故答案為4n+1.考點:規(guī)律型:圖形的變化類.13、將線段AB繞點B逆時針旋轉90°,在向右平移2個單位長度【解析】

根據(jù)圖形的旋轉和平移性質即可解題.【詳解】解:將線段AB繞點B逆時針旋轉90°,在向右平移2個單位長度即可得到A′B′、【點睛】本題考查了旋轉和平移,屬于簡單題,熟悉旋轉和平移的概念是解題關鍵.14、(50﹣).【解析】

過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得MN=AB.【詳解】解:如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N,則AB=MN,AM=BN.在直角△ACM,∵∠ACM=45°,AM=50m,∴CM=AM=50m.∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN===(m),∴MN=CM?CN=50?(m).則AB=MN=(50?)m.故答案是:(50?).【點睛】本題考查了解直角三角形的應用.解決此問題的關鍵在于正確理解題意的基礎上建立數(shù)學模型,把實際問題轉化為數(shù)學問題.15、y3<y1<y1【解析】

根據(jù)反比例函數(shù)的性質k<0時,在每個象限,y隨x的增大而增大,進行比較即可.【詳解】解:k=-1<0,∴在每個象限,y隨x的增大而增大,∵-3<-1<0,∴0<y1<y1.又∵1>0∴y3<0∴y3<y1<y1故答案為:y3<y1<y1【點睛】本題考查的是反比例函數(shù)的性質,理解性質:當k>0時,在每個象限,y隨x的增大而減小,k<0時,在每個象限,y隨x的增大而增大是解題的關鍵.16、4【解析】

連接OC,如圖所示,由直徑AB垂直于CD,利用垂徑定理得到E為CD的中點,即CE=DE,由OA=OC,利用等邊對等角得到一對角相等,確定出三角形COE為等腰直角三角形,求出CE的長,進而得出CD.【詳解】連接OC,如圖所示:∵AB是⊙O的直徑,弦CD⊥AB,∴OC=AB=4,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE為△AOC的外角,∴∠COE=45°,∴△COE為等腰直角三角形,∴CE=OC=,∴CD=2CE=,故答案為.【點睛】考查了垂徑定理,等腰直角三角形的性質,以及圓周角定理,熟練掌握垂徑定理是解本題的關鍵.17、x>1【解析】依題意可得x-1>0,解得x>1,所以函數(shù)的自變量x的取值范圍是x>1三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)證明見解析【解析】(1)根據(jù)平行線性質求出∠B=∠C,等量相減求出BE=CF,根據(jù)SAS推出兩三角形全等即可;(2)借助(1)中結論△ABE≌△DCF,可證出AE平行且等于DF,即可證出結論.證明:(1)如圖,∵AB∥CD,∴∠B=∠C.∵BF=CE∴BE=CF∵在△ABE與△DCF中,,∴△ABE≌△DCF(SAS);(2)如圖,連接AF、DE.由(1)知,△ABE≌△DCF,∴AE=DF,∠AEB=∠DFC,∴∠AEF=∠DFE,∴AE∥DF,∴以A、F、D、E為頂點的四邊形是平行四邊形.19、【解析】

連接,根據(jù)線段垂直平分線的性質得到,根據(jù)等腰三角形的性質、三角形內角和定理計算即可.【詳解】連接,∵為的中點,于點,∴,∴,∵,∴,∵,∴,∵,∴,∴,∴.【點睛】本題考查的是線段垂直平分線的性質、等腰三角形的性質以及三角形內角和定理,掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關鍵.20、sin2A=2cosAsinA【解析】

先作出直角三角形的斜邊的中線,進而求出,∠CED=2∠A,最后用三角函數(shù)的定義即可得出結論【詳解】解:如圖,作Rt△ABC的斜邊AB上的中線CE,則∴∠CED=2∠A,過點C作CD⊥AB于D,在Rt△ACD中,CD=ACsinA,在Rt△ABC中,AC=ABcosA=cosA在Rt△CED中,sin2A=sin∠CED==2ACsinA=2cosAsinA【點睛】此題主要解直角三角形,銳角三角函數(shù)的定義,直角三角形的斜邊的中線等于斜邊的一半,構造出直角三角形和∠CED=2∠A是解本題的關鍵.21、(1),點D的坐標為(2,-8)(2)點F的坐標為(7,)或(5,)(3)菱形對角線MN的長為或.【解析】分析:(1)利用待定系數(shù)法,列方程求二次函數(shù)解析式.(2)利用解析法,∠FAB=∠EDB,tan∠FAG=tan∠BDE,求出F點坐標.(3)分類討論,當MN在x軸上方時,在x軸下方時分別計算MN.詳解:(1)∵OB=OC=1,∴B(1,0),C(0,-1).∴,解得,∴拋物線的解析式為.∵=,∴點D的坐標為(2,-8).(2)如圖,當點F在x軸上方時,設點F的坐標為(x,).過點F作FG⊥x軸于點G,易求得OA=2,則AG=x+2,F(xiàn)G=.∵∠FAB=∠EDB,∴tan∠FAG=tan∠BDE,即,解得,(舍去).當x=7時,y=,∴點F的坐標為(7,).當點F在x軸下方時,設同理求得點F的坐標為(5,).綜上所述,點F的坐標為(7,)或(5,).(3)∵點P在x軸上,∴根據(jù)菱形的對稱性可知點P的坐標為(2,0).如圖,當MN在x軸上方時,設T為菱形對角線的交點.∵PQ=MN,∴MT=2PT.設TP=n,則MT=2n.∴M(2+2n,n).∵點M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.當MN在x軸下方時,設TP=n,得M(2+2n,-n).∵點M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.綜上所述,菱形對角線MN的長為或.點睛:1.求二次函數(shù)的解析式(1)已知二次函數(shù)過三個點,利用一般式,y=ax2+bx+c().列方程組求二次函數(shù)解析式.(2)已知二次函數(shù)與x軸的兩個交點(,利用雙根式,y=()求二次函數(shù)解析式,而且此時對稱軸方程過交點的中點,.2.處理直角坐標系下,二次函數(shù)與幾何圖形問題:第一步要寫出每個點的坐標(不能寫出來的,可以用字母表示),寫已知點坐標的過程中,經常要做坐標軸的垂線,第二步,利用特殊圖形的性質和函數(shù)的性質,往往是解決問題的鑰匙.22、(1)見解析;(2)見解析;(3)AG=1.【解析】

(1)利用垂徑定理、平行的性質,得出OC⊥CG,得證CG是⊙O的切線.(2)利用直徑所對圓周角為和垂直的條件得出∠2=∠B,再根據(jù)等弧所對的圓周角相等得出∠1=∠B,進而證得∠1=∠2,得證AF=CF.(3)根據(jù)直角三角形的性質,求出AD的長度,再利用平行的性質計算出結果.【詳解】(1)證明:連結OC,如圖,∵C是劣弧AE的中點,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切線;(2)證明:連結AC、BC,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠2+∠BCD=90°,而CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠2,∵C是劣弧AE的中點,∴,∴∠1=∠B,∴∠1=∠2,∴AF=CF;(3)解:∵CG∥AE,∴∠FAD=∠G,∵sinG=0.6,∴sin∠FAD==0.6,∵∠CDA=90°,AF=CF=4,∴DF=2.4,∴AD=3.2,∴CD=CF+DF=6.4,∵AF∥CG,∴,∴∴DG=,∴AG=DG﹣AD=1.【點睛】本題主要考查與圓有關的位置關系和圓中的計算問題,掌握切線的判定定理以及解直角三角形是解題的關鍵.23、0≤k≤且k≠1.【解析】

根據(jù)二次項系數(shù)非零、被開方數(shù)非負及根的判別式△≥0,即可得出關于k的一元一次不等式組,解之即可求出k的取值范圍.【詳解】解:∵關于x的一元二次方程(k﹣1)x2+x+3=0有實數(shù)根,∴2k≥0,k-1≠0,Δ=()2-43(k-1)≥0,解得:0≤k≤且k≠1.∴k的取值范圍為0≤k≤且k≠1.【點睛】本題考查了根的判別式、二次根式以及一元

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論