2024年初二年級上冊數(shù)學教案范本(17篇)_第1頁
2024年初二年級上冊數(shù)學教案范本(17篇)_第2頁
2024年初二年級上冊數(shù)學教案范本(17篇)_第3頁
2024年初二年級上冊數(shù)學教案范本(17篇)_第4頁
2024年初二年級上冊數(shù)學教案范本(17篇)_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第2024年初二年級上冊數(shù)學教案范本(通用17篇)推文網>教學資料>教案模板>數(shù)學教案>

2024年初二年級上冊數(shù)學教案范本2024-07-2910:55:05|夢熒教案是教學活動的依據,有著重要的地位,那么初二上冊數(shù)學教案怎么寫呢一起來看看吧,以下是小編整理的一些關于初二年級上冊數(shù)學教案,僅供參考。

2024年初二年級上冊數(shù)學教案范本精選篇1一、教材分析

1、特點與地位:重點中的重點。

本課是教材求兩結點之間的最短路徑問題是圖最常見的應用的之一,在交通運輸、通訊網絡等方面具有一定的實用意義。

2、重點與難點:結合學生現(xiàn)有抽象思維能力水平,已掌握基本概念等學情,以及求解最短路徑問題的自身特點,確立本課的重點和難點如下:

(1)重點:如何將現(xiàn)實問題抽象成求解最短路徑問題,以及該問題的解決方案。

(2)難點:求解最短路徑算法的程序實現(xiàn)。

3、教學安排:最短路徑問題包含兩種情況:一種是求從某個源點到其他各結點的最短路徑,另一種是求每一對結點之間的最短路徑。根據教學大綱安排,重點講解第一種情況問題的解決。安排一個課時講授。教材直接分析算法,考慮實際應用需要,補充旅游景點線路選擇的實例,實例中問題解決與算法分析相結合,逐步推動教學過程。

二、教學目標分析

1、知識目標:掌握最短路徑概念、能夠求解最短路徑。

2、能力目標:

(1)通過將旅游景點線路選擇問題抽象成求最短路徑問題,培養(yǎng)學生的數(shù)據抽象能力。

(2)通過旅游景點線路選擇問題的解決,培養(yǎng)學生的獨立思考、分析問題、解決問題的能力。

3、素質目標:培養(yǎng)學生講究工作方法、與他人合作,提高效率。

三、教法分析

課前充分準備,研讀教材,查閱相關資料,制作多媒體課件。教學過程中除了使用傳統(tǒng)的“講授法”以外,主要采用“案例教學法”,同時輔以多媒體課件,以啟發(fā)的.方式展開教學。由于本節(jié)課的內容屬于圖這一章的難點,考慮學生的接受能力,注意與學生溝通,根據學生的反應控制好教學進度是本節(jié)課成功的關鍵。

四、學法指導

1、課前上次課結課時給學生布置任務,使其有針對性的預習。

2、課中指導學生討論任務解決方法,引導學生分析本節(jié)課知識點。

3、課后給學生布置同類型任務,加強練習。

五、教學過程分析

(一)課前復習(3~5分鐘)回顧“路徑”的概念,為引出“最短路徑”做鋪墊。

教學方法及注意事項:

(1)采用提問方式,注意及時小結,提問的目的是幫助學生回憶概念。

(2)提示學生“溫故而知新”,養(yǎng)成良好的學習習慣。

(二)導入新課(3~5分鐘)以城市公路網為例,基于求兩個點間最短距離的實際需要,引出本課教學內容“求最短路徑問題”。教學方法及注意事項:

(1)先講實例,再指出概念,既可以吸引學生注意力,激發(fā)學習興趣,又可以實現(xiàn)教學內容的自然過渡。

(2)此處使用案例教學法,不在于問題的求解過程,只是為了說明問題的存在,所以這里的例子只需要概述,能夠說明問題即可。

(三)講授新課(25~30分鐘)

1、求某一結點到其他各結點的最短路徑(重點)主要采用案例教學法,提出旅游景點選擇的例子,解決如何選擇代價小、景點多的路線。

(1)將實際問題抽象成圖中求任一結點到其他結點最短路徑問題。(3~5分鐘)教學方法及注意事項:

①主要采用講授法,將實際問題用圖形表示出來。語言描述轉換的方法(用圓圈加標號表示某一景點,用箭頭表示從某景點到其他景點是否存在旅游線路,并且將旅途費用寫在箭頭的旁邊。)一邊用語言描述,一邊在黑上畫圖。

②注意示范畫圖只進行一部分,讓學生獨立思考、自主完成余下部分的轉化。

③及時總結,原型抽象(景點作為圖的結點,景點間的線路作為圖的邊,旅途費用作為邊的權值),將案例求解問題抽象成求圖中某一結點到其他各結點的最短路徑問題。

④利用多媒體課件,向學生展示一張帶權有向圖,并略作解釋,為后續(xù)教學做準備。

教學方法及注意事項:

①啟發(fā)式教學,如何實現(xiàn)按路徑長度遞增產生最短路徑?

②結合案例分析求解最短路徑過程中(重點)注意此處借助黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下部分由學生獨立思考完成。

(四)課堂小結(3~5分鐘)

1、明確本節(jié)課重點

2、提示學生,這種方式形成的圖又可以解決哪類實際問題呢?

(五)布置作業(yè)

1、書面作業(yè):復習本次課內容,準備一道備用習題,靈活把握時間安排。

六、教學特色

以旅游路線選擇為主線,靈活采用案例教學、示范教學、多媒體課件等多種手段輔助教學,使枯燥的理論講解生動起來。在順利開展教學的同時,體現(xiàn)所講內容的實用性,提高學生的學習興趣。

2024年初二年級上冊數(shù)學教案范本精選篇2教學目標:

知識目標:

1、初步掌握函數(shù)概念,能判斷兩個變量間的關系是否可看作函數(shù)。

2、根據兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。

3、會對一個具體實例進行概括抽象成為數(shù)學問題。

能力目標:

1、通過函數(shù)概念,初步形成學生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。

2、經歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。

情感目標:

1、經歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。

2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。

教學重點:

掌握函數(shù)概念。

判斷兩個變量之間的關系是否可看作函數(shù)。

能把實際問題抽象概括為函數(shù)問題。

教學難點:

理解函數(shù)的概念。

能把實際問題抽象概括為函數(shù)問題。

教學過程設計:

一、創(chuàng)設問題情境,導入新課

『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?

『生』:摩天輪。

『師』:你們坐過嗎?

……

『師』:當你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規(guī)律呢?

『生』:應該有規(guī)律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復依次,即轉動一圈高度就重復一次。

『師』:分析有道理。摩天輪上一點的高度h與旋轉時間t之間有一定的關系。請看下圖,反映了旋轉時間t(分)與摩天輪上一點的高度h(米)之間的關系。

大家從圖上可以看出,每過6分鐘摩天輪就轉一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應的高度h。下面根據圖5-1進行填表:

t/分012345……h(huán)/米

t/分012345……h(huán)/米31137453711……

『師』:對于給定的時間t,相應的高度h確定嗎?

『生』:確定。

『師』:在這個問題中,我們研究的對象有幾個?分別是什么?

『生』:研究的對象有兩個,是時間t和高度h。

『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關系嗎?如:彈簧的長度與所掛物體的質量,路程的距離與所用時間……了解這些關系,可以幫助我們更好地認識世界。下面我們就去研究一些有關變量的問題。

二、新課學習

做一做

(1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數(shù)的增加,物體的總數(shù)是如何變化的?

填寫下表:

層數(shù)n12345…物體總數(shù)y1361015…『師』:在這個問題中的變量有幾個?分別師什么?

『生』:變量有兩個,是層數(shù)與圓圈總數(shù)。

(2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經驗公式,其中V表示剎車前汽車的速度(單位:千米/時)

①計算當fenbie為50,60,100時,相應的滑行距離S是多少?

②給定一個V值,你能求出相應的S值嗎?

解:略

議一議

『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么?

『生』:相同點是:這三個問題中都研究了兩個變量。

不同點是:在第一個問題中,是以圖象的形式表示兩個變量之間的關系;第二個問題中是以表格的形式表示兩個變量間的關系;第三個問題是以關系式來表示兩個變量間的關系的。

『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應地就確定了另一個變量的值”這一共性。

函數(shù)的概念

在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應地就確定另一個變量(因變量)的值。

一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。

三、隨堂練習

書P152頁隨堂練習1、2、3

四、本課小結

初步掌握函數(shù)的概念,能判斷兩個變量間的關系是否可看作函數(shù)。

在一個函數(shù)關系式中,能識別自變量與因變量,給定自變量的值,相應地會求出函數(shù)的值。

函數(shù)的三種表達式:

(1)圖象;

(2)表格;

(3)關系式。

五、探究活動

為了加強公民的節(jié)水意識,某市制定了如下用水收費標準:每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費,該市某戶居民5月份用水x噸(x10),應交水費y元,請用方程的知識來求有關x和y的關系式,并判斷其中一個變量是否為另一個變量的函數(shù)?

(答案:Y=1.8x-6或)

六、課后作業(yè)

習題6.1

2024年初二年級上冊數(shù)學教案范本精選篇3一、教學內容:

本節(jié)內容是人教版教材八年級上冊,第十四章第2節(jié)乘法公式的第二課時——完全平方公式。

二、教材分析:

完全平方公式是乘法公式的重要組成部分,也是乘法運算知識的升華,它是在學生學習整式乘法后,對多項式乘法中出現(xiàn)的一種特殊的算式的總結,體現(xiàn)了從一般到特殊的思想方法。完全平方公式是學生后續(xù)學好因式分解、分式運算的必備知識,它還是配方法的基本模式,為以后學習一元二次方程、函數(shù)等知識奠定了基礎,所以說完全平方公式屬于代數(shù)學的基礎地位。

本節(jié)課內容是在學生掌握了平方差公式的基礎上,研究完全平方公式的推導和應用,公式的發(fā)現(xiàn)與驗證為學生體驗規(guī)律探索提供了一種較好的模式,培養(yǎng)學生逐步形成嚴密的邏輯推理能力。完全平方公式的學習對簡化某些代數(shù)式的運算,培養(yǎng)學生的求簡意識很有幫助。使學生了解到完全平方公式是有力的數(shù)學工具。

重點:掌握完全平方公式,會運用公式進行簡單的計算。

難點:理解公式中的字母含義,即對公式中字母a、b的理解與正確應用。

三、教學目標

(1)經歷探索完全平方公式的推導過程,掌握完全平方公式,并能正確運用公式進行簡單計算。

(2)進一步發(fā)展學生的符號感和推理能力,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,學會獨立思考。

(3)通過推導完全平方公式及分析結構特征,培養(yǎng)學生觀察、分析、歸納的能力,學會與他人合作交流,體驗解決問題的多樣性。

(4)體驗完全平方公式可以簡化運算從而激發(fā)學生的學習興趣;在自主探究、合作交流的學習過程中獲得體驗成功的喜悅,增強學習數(shù)學的自信心。

四、學情分析與教法學法

學情分析:課程標準提出數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知識經驗基礎之上,本節(jié)課就是在前面的學習中,學生已經掌握了整式的乘法運算及平方差公式的基礎上開展的,具備了初步的總結歸納能力。另外,14歲的中學生充滿了好奇心,有較強的求知欲、創(chuàng)造欲、表現(xiàn)欲,所以只有能調動學生的學習熱情,本節(jié)內容才較易掌握。但八年級學生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節(jié)課要注意的問題。

學法:以自主探究為主要學習方式,使學生在獨立思考、歸納總結、合作交流

總結反思中獲得數(shù)學知識與技能。

教法:以啟發(fā)引導式為主要教學方式,在引導探究、歸納總結、典例精析、合作交流的教學過程中,教師做好組織者和引導者,讓學生在老師的指導下處于主動探究的學習狀態(tài)。

五、教學過程

(略)

六、教學評價

在教學中,教師在精心設置教學環(huán)節(jié)中,做到以學生為主體,做好組織者和引導者,全面評價學生在知識技能、數(shù)學思考、問題解決和情感態(tài)度等方面的表現(xiàn)。教師通過情境引入、提供問題引導學生從已有的知識為出發(fā)點,自主探究,發(fā)現(xiàn)問題,深入思考。學生解決問題要以獨立思考為主,當遇到困難時學會求助交流,教師也要給學生思考交流的時間,讓學生經歷得出結論的過程,培養(yǎng)發(fā)現(xiàn)問題解決問題的能力。

在整個學習過程中,通過對學生參與自主探究的程度、合作交流的意識以及獨立思考的習慣,發(fā)現(xiàn)問題的能力進行評價,并對學生的想法或結論給予鼓勵評價。

2024年初二年級上冊數(shù)學教案范本精選篇4【學習目標】

1.掌握等腰三角形的有關概念和性質,運用等腰三角形的性質解決問題。

2.通過學生之間的交流活動,培養(yǎng)學生主動與他人合作交流的意識和良好的學習習慣。

【學習重點】

探索和掌握等腰三角形的性質及其應用。

【學習難點】

等腰三角形的性質的應用。

【學習過程】

一、你知道嗎

等腰三角形的有關概念

《等腰三角形應用》講義

課前預習

1.SAS,SSS,ASA,AAS,HL

2.這條線段的兩個端點的距離相等

3.這個角的兩邊的`距離相等

4.這樣的點有4個

知識點睛

1.線段垂直平分線上的點到這條線段的兩個端點的距離相等

2.角平分線上的點到這個角的兩邊距離相等

3.頂角的平分線底邊上的中線底邊上的高三線合一

《13.3等腰三角形》專項練習

1、填空題

2、如圖,以等腰直角三角形AOB的斜邊為直角邊向外作第2個等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜邊為直角邊向外作第3個等腰直角三角形A1BB1,如此作下去。若OA=OB=1,則第個等腰直角三角形的面積。

2024年初二年級上冊數(shù)學教案范本精選篇5設置依據教學目標

1、了解多面體、直棱柱的有關概念

2、會認直棱柱的側棱、側面、底面.

3、了解直棱柱的側棱互相平行且相等,側面是長方形(含正方形)等特征.

教學重點與難點

教學重點:直棱柱的有關概念

教學難點:本節(jié)的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達能力.

教學準備每個學生準備一個幾何體,(分好學習小組)教師準備各種直棱柱和長方體、立方體模型

教學過程

內容與環(huán)節(jié)預設、簡明設計意圖二度備課(即時反思與糾正)

一、創(chuàng)設情景,引入新課

師:在現(xiàn)實生活中,像筆筒、西瓜、草莓、禮品盒等都呈現(xiàn)出了立體圖形的形狀,在你身邊,還有沒有這樣類似的`立體圖形呢?

析:學生很容易回答出更多的答案。

師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。

二、合作交流,探求新知

1.多面體、棱、頂點概念:

師:(出示長方體,立方體模型)這是我們熟悉的立體圖形,它們是有幾個平面圍成的?都有什么相同特點?

析:一個同學回答,然后小結概念:由若干個平面圍成的幾何體,叫做多面體。多面體上相鄰兩個面之間的交線叫做多面體的棱,幾個面的公共頂點叫做多面體的頂點

2.合作交流

師:以學習小組為單位,拿出事先準備好的幾何體。

學生活動:(讓學生從中閉眼摸出某些幾何體,邊摸邊用語言描述其特征。)

師:同學們再討論一下,能否把自己的語言轉化為數(shù)學語言。

學生活動:分小組討論。

說明:真正體現(xiàn)了“以生為本”。讓學生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學生的主體作用和教師的主導作用,課堂氣氛活躍,教師教的輕松,學生學的愉快。

師:請大家找出與長方體,立方體類似的物體或模型。

析:舉出實例。(找出區(qū)別)

師:(總結)棱柱分為之直棱柱和斜棱柱。(根據其側棱與底面是否垂直)根據底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:

有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

側面都是長方形含正方形。

長方體和正方體都是直四棱柱。

3.反饋鞏固

完成“做一做”

析:由第(3)小題可以得到:

直棱柱的相鄰兩條側棱互相平行且相等。

4.學以致用

出示例題。(先請學生單獨考慮,再作講解)

析:引導學生著重觀察首飾盒的側面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習慣)

最后完成例題中的“想一想”

5.鞏固練習(學生練習)

完成“課內練習”

三、小結回顧,反思提高

師:我們這節(jié)課的重點是什么?哪些地方比較難學呢?

合作交流后得到:重點直棱柱的有關概念。

直棱柱有以下特征:

有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

側面都是長方形含正方形。

例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。

板書設計

作業(yè)布置或設計作業(yè)本及課時特訓

2024年初二年級上冊數(shù)學教案范本精選篇6【教學目標】

知識與技能

會推導平方差公式,并且懂得運用平方差公式進行簡單計算。

過程與方法

經歷探索特殊形式的多項式乘法的過程,發(fā)展學生的符號感和推理能力,使學生逐漸掌握平方差公式。

情感、態(tài)度與價值觀

通過合作學習,體會在解決具體問題過程中與他人合作的重要性,體驗數(shù)學活動充滿著探索性和創(chuàng)造性。

【教學重難點】

重點:平方差公式的推導和運用,以及對平方差公式的幾何背景的了解。

難點:平方差公式的應用。

關鍵:對于平方差公式的推導,我們可以通過教師引導,學生觀察、總結、猜想,然后得出結論來突破;抓住平方差公式的本質特征,是正確應用公式來計算的關鍵。

【教學過程】

一、創(chuàng)設情境,故事引入

【情境設置】教師請一位學生講一講《狗熊掰棒子》的故事

【學生活動】1位學生有聲有色地講述著《狗熊掰棒子》的故事,其他學生認真聽著,不時補充。

【教師歸納】聽了這則故事之后,同學們應該懂得這么一個道理,學習千萬不能像狗熊掰棒子一樣,前面學,后面忘,那么,上節(jié)課我們學習了什么呢?還記得嗎?

【學生回答】多項式乘以多項式。

【教師激發(fā)】大家是不是已經掌握呢?還是早扔掉了呢?和小狗熊犯了同樣的錯誤呢?下面我們就來做這幾道題,看看你是否掌握了以前的知識。

【問題牽引】計算:

(1)(x+2)(x—2);(2)(1+3a)(1—3a);

(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

做完之后,觀察以上算式及運算結果,你能發(fā)現(xiàn)什么規(guī)律?再舉兩個例子驗證你的發(fā)現(xiàn)。

【學生活動】分四人小組,合作學習,獲得以下結果:

(1)(x+2)(x—2)=x2—4;

(2)(1+3a)(1—3a)=1—9a2;

(3)(x+5y)(x—5y)=x2—25y2;

(4)(y+3z)(y—3z)=y2—9z2。

【教師活動】請一位學生上臺演示,然后引導學生仔細觀察以上算式及其運算結果,尋找規(guī)律。

【學生活動】討論

【教師引導】剛才同學們從上述算式中找到了這一組整式乘法的結果的規(guī)律,這些是一類特殊的多項式相乘,那么如何用字母來表示剛才同學們所歸納出來的特殊多項式相乘的規(guī)律呢?

【學生回答】可以用(a+b)(a—b)表示左邊,那么右邊就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

用語言描述就是:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。

【教師活動】表揚學生的探索精神,引出課題──平方差,并說明這是一個平方差公式和公式中的字母含義。

二、范例學習,應用所學

【教師講述】

平方差公式的運用,關鍵是正確尋找公式中的a和b,只有正確找到a和b,一切就變得容易了?,F(xiàn)在大家來看看下面幾個例子,從中得到啟發(fā)。

例1:運用平方差公式計算:

(1)(2x+3)(2x—3);

(2)(b+3a)(3a—b);

(3)(—m+n)(—m—n)。

《乘法公式》同步練習

二、填空題

5、冪的乘方,底數(shù)______,指數(shù)______,用字母表示這個性質是______。

6、若32×83=2n,則n=______。

《乘法公式》同步測試題

25、利用正方形的`面積公式和梯形的面積公式即可求解;

根據所得的兩個式子相等即可得到。

此題考查了平方差公式的幾何背景,根據正方形的面積公式和梯形的面積公式得出它們之間的關系是解題的關鍵,是一道基礎題。

26、由等式左邊兩數(shù)的底數(shù)可知,兩底數(shù)是相鄰的兩個自然數(shù),右邊為兩底數(shù)的和,由此得出規(guī)律;

等式左邊減數(shù)的底數(shù)與序號相同,由此得出第n個式子;

2024年初二年級上冊數(shù)學教案范本精選篇7一、教學目標:

1、加深對加權平均數(shù)的理解

2、會根據頻數(shù)分布表求加權平均數(shù),從而解決一些實際問題

3、會用計算器求加權平均數(shù)的值

二、重點、難點和難點的突破方法:

1、重點:根據頻數(shù)分布表求加權平均數(shù)

2、難點:根據頻數(shù)分布表求加權平均數(shù)

3、難點的突破方法:

首先應先復習組中值的定義,在七年級下教材P72中已經介紹過組中值定義。因為在根據頻數(shù)分布表求加權平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據中的每個數(shù)據的值,所以有必要在這里復習組中值定義。

應給學生介紹為什么可以利用組中值代替一組數(shù)據中的每個數(shù)據的值,以及這樣代替的好處、不妨舉一個例子,在一組中如果數(shù)據分布較為均勻時,比如教材P140探究問題的表格中的第三組數(shù)據,它的范圍是41≤X≤61,共有20個數(shù)據,若分布較為平均,41、42、43、44…60個出現(xiàn)1次,那么這組數(shù)據的和為41+42+…+60=1010。而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當數(shù)據分布較為平均時組中值恰好近似等于它的平均數(shù)。所以利用組中值X頻數(shù)去代替這組數(shù)據的和還是比較合理的,而且這樣做的好處是簡化了計算量。

為了更好的理解這種近似計算的方法和合理性,可以讓學生去讀統(tǒng)計表,體會表格的實際意義。

三、例習題的意圖分析

1、教材P140探究欄目的意圖。

(1)、主要是想引出根據頻數(shù)分布表求加權平均數(shù)近似值的計算方法。

(2)、加深了對“權”意義的理解:當利用組中值近似取代替一組數(shù)據中的平均值時,頻數(shù)恰好反映這組數(shù)據的輕重程度,即權。

這個探究欄目也可以幫助學生去回憶、復習七年級下的關于頻數(shù)分布表的一些內容,比如組、組中值及頻數(shù)在表中的具體意義。

2、教材P140的思考的意圖。

(1)、使學生通過思考這兩個問題過程中體會利用統(tǒng)計知識可以解決生活中的許多實際問題

(2)、幫助學生理解表中所表達出來的信息,培養(yǎng)學生分析數(shù)據的能力。

3、P141利用計算器計算平均值

這部分篇幅較小,與傳統(tǒng)教材那種詳細介紹計算器使用方法產生明顯對比。一則由于學校中學生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器。所以本節(jié)課的重點內容不是利用計算器求加權平均數(shù),但是掌握其使用方法確實可以運算變得簡單。統(tǒng)計中一些數(shù)據較大、較多的計算也變得容易些了。

四、課堂引入

采用教材原有的引入問題,設計的幾個問題如下:

(1)、請同學讀P140探究問題,依據統(tǒng)計表可以讀出哪些信息

(2)、這里的組中值指什么,它是怎樣確定的

(3)、第二組數(shù)據的頻數(shù)5指什么呢

(4)、如果每組數(shù)據在本組中分布較為均勻,比組數(shù)據的平均值和組中值有什么關系。

五、隨堂練習

1、某校為了了解學生作課外作業(yè)所用時間的情況,對學生作課外作業(yè)所用時間進行調查,下表是該校初二某班50名學生某一天做數(shù)學課外作業(yè)所用時間的情況統(tǒng)計表

所用時間t(分鐘)人數(shù)

0t≤104

0≤6

20t≤20p=1420

30t≤40p=13

40t≤50p=9

50t≤604

(1)、第二組數(shù)據的組中值是多少

(2)、求該班學生平均每天做數(shù)學作業(yè)所用時間

2、某班40名學生身高情況如下圖,

請計算該班學生平均身高

答案1.(1).15.(2)28.2.165

六、課后練習:

1、某公司有15名員工,他們所在的部門及相應每人所創(chuàng)的年利潤如下表

部門ABCDEFG

人數(shù)1124225

每人創(chuàng)得利潤2052.521.51.51.2

該公司每人所創(chuàng)年利潤的平均數(shù)是多少萬元

2、下表是截至到20__年費爾茲獎得主獲獎時的年齡,根據表格中的信息計算獲費爾茲獎得主獲獎時的平均年齡

年齡頻數(shù)

28≤X304

30≤X323

32≤X348

34≤X367

36≤X389

38≤X4011

40≤X422

3、為調查居民生活環(huán)境質量,環(huán)保局對所轄的50個居民區(qū)進行了噪音(單位:分貝)水平的調查,結果如下圖,求每個小區(qū)噪音的平均分貝數(shù)。

答案:1.約2.95萬元

2.約29歲

3.60.54分貝

2024年初二年級上冊數(shù)學教案范本精選篇8教學目標:

理解同底數(shù)冪的乘法法則,運用同底數(shù)冪的乘法法則解決一些實際問題.通過“同底數(shù)冪的乘法法則”的推導和應用,使學生初步理解特殊到般再到特殊的認知規(guī)律.

教學重點與難點:

正確理解同底數(shù)冪的乘法法則以及適用范圍.

教學過程:

一、回顧冪的相關知識

an的意義:an表示n個a相乘,我們把這種運算叫做乘方.乘方的結果叫冪;a叫做底數(shù),n是指數(shù).

二、創(chuàng)設情境,感覺新知

問題:一種電子計算機每秒可進行1012次運算,它工作103秒可進行多少次運算?

學生分析,總結結果

1012×103=()×(10×10×10)==1015.

通過觀察可以發(fā)現(xiàn)1012、103這兩個因數(shù)是同底數(shù)冪的形式,所以我們把像1012×103的運算叫做同底數(shù)冪的乘法.根據實際需要,我們有必要研究和學習這樣的運算──同底數(shù)冪的乘法.

學生動手:

計算下列各式:

(1)25×22

(2)a3·a2

(3)5m·5n(m、n都是正整數(shù))

教師引導學生注意觀察計算前后底數(shù)和指數(shù)的關系,并能用自己的語言描述.

得到結論:

(1)特點:這三個式子都是底數(shù)相同的冪相乘.相乘結果的底數(shù)與原來底數(shù)相同,指數(shù)是原來兩個冪的指數(shù)的和.

(2)一般性結論:am·an表示同底數(shù)冪的乘法.根據冪的意義可得:

am·an=()·()=()=am+n

am·an=am+n(m、n都是正整數(shù)),即為:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加

三、小結:

同底數(shù)冪的乘法的運算法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.

注意兩點:

一是必須是同底數(shù)冪的乘法才能運用這個性質;

二是運用這個性質計算時一定是底數(shù)不變,指數(shù)相加,即am·an=am+n

2024年初二年級上冊數(shù)學教案范本精選篇9一.教學目標:

1.了解方差的定義和計算公式。

2.理解方差概念的產生和形成的過程。

3.會用方差計算公式來比較兩組數(shù)據的波動大小。

二.重點、難點和難點的突破方法:

1.重點:方差產生的必要性和應用方差公式解決實際問題。

2.難點:理解方差公式

3.難點的突破方法:

方差公式:S=[(-)+(-)+…+(-)]比較復雜,學生理解和記憶這個公式都會有一定困難,以致應用時常常出現(xiàn)計算的錯誤,為突破這一難點,我安排了幾個環(huán)節(jié),將難點化解。

(1)首先應使學生知道為什么要學習方差和方差公式,目的不明確學生很難對本節(jié)課內容產生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運動員、選擇質量穩(wěn)定的電器等。學生從中可以體會到生活中為了更好的做出選擇判斷經常要去了解一組數(shù)據的波動程度,僅僅知道平均數(shù)是不夠的。

(2)波動性可以通過什么方式表現(xiàn)出來第一環(huán)節(jié)中點明了為什么去了解數(shù)據的波動性,第二環(huán)節(jié)則主要使學生知道描述數(shù)據,波動性的方法??梢援嬚劬€圖方法來反映這種波動大小,可是當波動大小區(qū)別不大時,僅用畫折線圖方法去描述恐怕不會準確,這自然希望可以出現(xiàn)一種數(shù)量來描述數(shù)據波動大小,這就引出方差產生的必要性。

(3)第三環(huán)節(jié)教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據與平均值的差完全平方后便可以反映出每個數(shù)據的波動大小,整體的波動大小可以通過對每個數(shù)據的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據的波動大小的一個統(tǒng)計量,教師也可以根據學生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據波動大小的其他統(tǒng)計量。

三.例習題的意圖分析:

1.教材P125的討論問題的意圖:

(1).創(chuàng)設問題情境,引起學生的學習興趣和好奇心。

(2).為引入方差概念和方差計算公式作鋪墊。

(3).介紹了一種比較直觀的衡量數(shù)據波動大小的方法——畫折線法。

(4).客觀上反映了在解決某些實際問題時,求平均數(shù)或求極差等方法的局限性,使學生體會到學習方差的意義和目的。

2.教材P154例1的設計意圖:

(1).例1放在方差計算公式和利用方差衡量數(shù)據波動大小的規(guī)律之后,不言而喻其主要目的是及時復習,鞏固對方差公式的掌握。

(2).例1的解題步驟也為學生做了一個示范,學生以后可以模仿例1的格式解決其他類似的實際問題。

四.課堂引入:

除采用教材中的引例外,可以選擇一些更時代氣息、更有現(xiàn)實意義的引例。例如,通過學生觀看2024年奧運會劉翔勇奪110米欄冠軍的錄像,進而引導教練員根據平時比賽成績選擇參賽隊員這樣的實際問題上,這樣引入自然而又真實,學生也更感興趣一些。

五.例題的分析:

教材P154例1在分析過程中應抓住以下幾點:

1.題目中“整齊”的含義是什么說明在這個問題中要研究一組數(shù)據的什么學生通過思考可以回答出整齊即波動小,所以要研究兩組數(shù)據波動大小,這一環(huán)節(jié)是明確題意。

2.在求方差之前先要求哪個統(tǒng)計量,為什么學生也可以得出先求平均數(shù),因為公式中需要平均值,這個問題可以使學生明確利用方差計算步驟。

3.方差怎樣去體現(xiàn)波動大小

這一問題的提出主要復習鞏固方差,反映數(shù)據波動大小的規(guī)律。

六.隨堂練習:

1.從甲、乙兩種農作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)

甲:9、10、11、12、7、13、10、8、12、8;

乙:8、13、12、11、10、12、7、7、9、11;

問:(1)哪種農作物的苗長的比較高

(2)哪種農作物的.苗長得比較整齊

2.段巍和小金兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的成績比較穩(wěn)定為什么

測試次數(shù)12345

段巍1314131213

小金1013161412

參考答案:1.(1)甲、乙兩種農作物的苗平均高度相同

(2)甲整齊

2.段巍的成績比小金的成績要穩(wěn)定。

七.課后練習:

1.已知一組數(shù)據為2、0、-1、3、-4,則這組數(shù)據的方差為。

2.甲、乙兩名學生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:

甲:7、8、6、8、6、5、9、10、7、4

乙:9、5、7、8、7、6、8、6、7、7

經過計算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但SS,所以確定去參加比賽。

3.甲、乙兩臺機床生產同種零件,10天出的次品分別是()

甲:0、1、0、2、2、0、3、1、2、4

乙:2、3、1、2、0、2、1、1、2、1

分別計算出兩個樣本的平均數(shù)和方差,根據你的計算判斷哪臺機床的性能較好

4.小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)

小爽10.810.911.010.711.111.110.811.010.710.9

小兵10.910.910.810.811.010.910.811.110.910.8

如果根據這幾次成績選拔一人參加比賽,你會選誰呢

答案:1.62.3.=1.5、S=0.975、=1.5、S=0.425,乙機床性能好

4.=10.9、S=0.02;

=10.9、S=0.008

選擇小兵參加比賽。

2024年初二年級上冊數(shù)學教案范本精選篇10教學目標:

1、掌握平均數(shù)、中位數(shù)、眾數(shù)的概念,會求一組數(shù)據的平均數(shù)、中位數(shù)、眾數(shù)。

2、在加權平均數(shù)中,知道權的差異對平均數(shù)的影響,并能用加權平均數(shù)解釋現(xiàn)實生活中一些簡單的現(xiàn)象。

3、了解平均數(shù)、中位數(shù)、眾數(shù)的差別,初步體會它們在不同情境中的應用。

4、能利和計算器求一組數(shù)據的算術平均數(shù)。

教學重點:

體會平均數(shù)、中位數(shù)、眾數(shù)在具體情境中的意義和應用。

教學難點:

對于平均數(shù)、中位數(shù)、眾數(shù)在不同情境中的應用。

教學方法:

歸納教學法。

教學過程:

一、知識回顧與思考

1、平均數(shù)、中位數(shù)、眾數(shù)的概念及舉例。

一般地對于n個數(shù)X1……Xn把(X1+X2+…Xn)叫做這n個數(shù)的.算術平均數(shù),簡稱平均數(shù)。

如某公司要招工,測試內容為數(shù)學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績?yōu)閿?shù)學,語文、外語成績的加權平均數(shù),25%、25%、50%分別是數(shù)學、語文、外語三項測試成績的權。

中位數(shù)就是把一組數(shù)據按大小順序排列,處在最中間位置的數(shù)(或最中間兩個數(shù)據的平均數(shù))叫這組數(shù)據的中位數(shù)。

眾數(shù)就是一組數(shù)據中出現(xiàn)次數(shù)最多的那個數(shù)據。

如3,2,3,5,3,4中3是眾數(shù)。

2、平均數(shù)、中位數(shù)和眾數(shù)的特征:

(1)平均數(shù)、中位數(shù)、眾數(shù)都是表示一組數(shù)據“平均水平”的平均數(shù)。

(2)平均數(shù)能充分利用數(shù)據提供的信息,在生活中較為常用,但它容易受極端數(shù)字的影響,且計算較繁。

(3)中位數(shù)的優(yōu)點是計算簡單,受極端數(shù)字影響較小,但不能充分利用所有數(shù)字的信息。

(4)眾數(shù)的可靠性較差,它不受極端數(shù)據的影響,求法簡便,當一組數(shù)據中個別數(shù)據變動較大時,適宜選擇眾數(shù)來表示這組數(shù)據的“集中趨勢”。

3、算術平均數(shù)和加權平均數(shù)有什么區(qū)別和聯(lián)系:算術平均數(shù)是加權平均數(shù)的一種特殊情況,加權平均數(shù)包含算術平均數(shù),當加權平均數(shù)中的權相等時,就是算術平均數(shù)。

4、利用計算器求一組數(shù)據的平均數(shù)。

利用科學計算器求平均數(shù)的方法計算平均數(shù)。

二、例題講解:

某校規(guī)定:學生的平時作業(yè)、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業(yè)、期中練習、期末考試的數(shù)學成績依次為90分,92分,85分,小亮這學期的數(shù)學總評成績是多少

三、課堂練習:

復習題A組

四、小結:

1、掌握平均數(shù)、中位數(shù)與眾數(shù)的概念及計算。

2、理解算術平均數(shù)與加權平均數(shù)的聯(lián)系與區(qū)別。

五、作業(yè):

復習題B組、C組(選做)

2024年初二年級上冊數(shù)學教案范本精選篇11教學目標:

1.知道負整數(shù)指數(shù)冪=(a≠0,n是正整數(shù)).

2.掌握整數(shù)指數(shù)冪的運算性質.

3.會用科學計數(shù)法表示小于1的數(shù).

教學重點:

掌握整數(shù)指數(shù)冪的運算性質。

難點:

會用科學計數(shù)法表示小于1的數(shù)。

情感態(tài)度與價值觀:

通過學習課堂知識使學生懂得任何事物之間是相互聯(lián)系的,理論來源于實踐,服務于實踐。能利用事物之間的類比性解決問題.

教學過程:

一、課堂引入

1.回憶正整數(shù)指數(shù)冪的運算性質:

(1)同底數(shù)的冪的乘法:aman=am+n(m,n是正整數(shù));

(2)冪的乘方:(am)n=amn(m,n是正整數(shù));

(3)積的乘方:(ab)n=anbn(n是正整數(shù));

(4)同底數(shù)的冪的除法:am÷an=amn(a≠0,m,n是正整數(shù),m>n);

(5)商的乘方:()n=(n是正整數(shù));

2.回憶0指數(shù)冪的規(guī)定,即當a≠0時,a0=1.

3.你還記得1納米=109米,即1納米=米嗎?

4.計算當a≠0時,a3÷a5===,另一方面,如果把正整數(shù)指數(shù)冪的運算性質am÷an=amn(a≠0,m,n是正整數(shù),m>n)中的m>n這個條件去掉,那么a3÷a5=a35=a2,于是得到a2=(a≠0)。

二、總結:一般地,數(shù)學中規(guī)定:當n是正整數(shù)時,=(a≠0)(注意:適用于m、n可以是全體整數(shù))教師啟發(fā)學生由特殊情形入手,來看這條性質是否成立.事實上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運算性質都可推廣到整數(shù)指數(shù)冪;aman=am+n(m,n是整數(shù))這條性質也是成立的.

三、科學記數(shù)法:

我們已經知道,一些較大的數(shù)適合用科學記數(shù)法表示,有了負整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學記數(shù)法來表示,例如:0.000012=1.2×105.即小于1的正數(shù)可以用科學記數(shù)法表示為a×10n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù)。啟發(fā)學生由特殊情形入手,比如0.012=1.2×102,0.0012=1.2×103,0.00012=1.2×104,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012=1.2×109,即對于一個小于1的正數(shù),如果小數(shù)點后到第一個非0數(shù)字前有8個0,用科學記數(shù)法表示這個數(shù)時,10的指數(shù)是?9,如果有m個0,則10的指數(shù)應該是?m1.

2024年初二年級上冊數(shù)學教案范本精選篇12一、內容和內容解析

1、內容

三角形高線、中線及角平分線的概念、幾何語言表達及它們的畫法。

2、內容解析

本節(jié)內容概念較多,有三角形的高、中線、角平分線和重心等有關概念;需要學生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養(yǎng)學生動手操作及解決問題的能力;鼓勵學生主動參與,體驗幾何知識在現(xiàn)實生活中的真實性,激發(fā)學生熱愛生活、勇于探索的思想感情。

理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學生在幾何學習上的一個深入。學習了這一課,對于學生增長幾何知識,運用幾何知識解決生活中的有關問題,起著十分重要的作用。它也是學習三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識一個準備。

本節(jié)的重點是了解三角形的高、中線及角平分線概念的同時還要掌握它們的畫法,難點是鈍角三角形的高的畫法及不同類型的三角形高線的位置關系。

二、目標和目標解析

1、教學目標

(1)理解三角形的高、中線與角平分線等概念;

(2)會用工具畫三角形的高、中線與角平分線;

2、教學目標解析

(1)經歷畫圖實踐過程,理解三角形的高、中線與角平分線等概念。

(2)能夠熟練用幾何語言表達三角形的高、中線與角平分線的性質。

(3)掌握三角形的高、中線與角平分線的畫法。

(4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點。

三、教學問題診斷分析

三角形的高線的理解:三角形的高是線段,不是直線,它的一個端點是三角形的頂點,另一個端點在這個頂點的對邊或對邊所在的直線上。

三角形的中線的理解:三角形的中線也是線段,它是一個頂點和對邊中點的連線,它的一個端點是三角形的頂點,另一個端點是這個頂點的對邊中點。

三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點是一個端點,另一個端點在對邊上。而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯(lián)系又有本質的區(qū)別。

2024年初二年級上冊數(shù)學教案范本精選篇13【教學目標】

知識目標:

解單項式乘以多項式的意義,理解單項式與多項式的乘法法則,會進行單項式與多項式的乘法運算。

能力目標:

(1)經歷探索乘法運算法則的過程,發(fā)展觀察、歸納、猜測、驗證等能力;

(2)體會乘法分配律的作用與轉化思想,發(fā)展有條理的思考及語言表達能力。

情感目標:

充分調動學生學習的積極性、主動性

【教學重點】

單項式與多項式的乘法運算

【教學難點】

推測整式乘法的運算法則。

【教學過程】

一、復習引入

通過對已學知識的復習引入課題(學生作答)

1.請說出單項式與單項式相乘的法則:

單項式與單項式相乘,把它們的系數(shù)、相同字母的冪分別相乘,對于只在一個單項式里出現(xiàn)的字母,則連同它的指數(shù)作為積的`一個因式。

(系數(shù)×系數(shù))×(同字母冪相乘)×單獨的冪

例如:(2a2b3c)(-3ab)

解:原式=[2·(-3)]·(a2·a)·(b3·b)·c

=-6a3b4c

2.說出多項式2x2-3x-1的項和各項的系數(shù)項分別為:2x2、-3x、-1系數(shù)分別為:2、-3、-1

問:如何計算單項式與多項式相乘?例如:2a2·(3a2-5b)該怎樣計算

這便是我們今天要研究的問題。

二、新知探究

已知一長方形長為(a+b+c),寬為m,則面積為:m(a+b+c)

現(xiàn)將這個長方形分割為寬為m,長分別為a、b、c的三個小長方形,其面積之和為ma+mb+mc因為分割前后長方形沒變所以m(a+b+c)=ma+mb+mc

上一等式根據什么規(guī)律可以得到?從中可以得出單項式與多項式相乘的運算法則該如何表述?(學生分組討論:前后座為一組;找個別同學作答,教師作評)

結論單項式與多項式相乘的運算法則:

用單項式分別去乘多項式的每一項,再把所得的積相加。

用字母表示為:m(a+b+c)=ma+mb+mc

運算思路:單×多

轉化

分配律

單×單

三、例題講解

例計算:(1)(-2a2)·(3ab2–5ab3)

(2)(-4x)·(2x2+3x-1)

解:(1)原式=(-2a2)·3ab2+(-2a2)·(–5ab3)①=-6a3b2+10a3b3②

(2)原式=(-4x)·2x2+(-4x)·3x+(-4x)·(-1)①

2024年初二年級上冊數(shù)學教案范本精選篇14教學目標

1、知識與技能

領會運用完全平方公式進行因式分解的方法,發(fā)展推理能力。

2、過程與方法

經歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟。

3、情感、態(tài)度與價值觀

培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應用能力。

重、難點與關鍵

1、重點:理解完全平方公式因式分解,并學會應用。

2、難點:靈活地應用公式法進行因式分解。

3、關鍵:應用“化歸”、“換元”的思想方法,把問題進行形式上的轉化,達到能應用公式法分解因式的目的

教學方法

采用“自主探究”教學方法,在教師適當指導下完成本節(jié)課內容。

教學過程

一、回顧交流,導入新知

【問題牽引】

1、分解因式:

(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

(3)x2-0.01y2.

【知識遷移】

2、計算下列各式:

(1)(m-4n)2;(2)(m+4n)2;

(3)(a+b)2;(4)(a-b)2.

【教師活動】引導學生完成下面兩道題,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律。

3、分解因式:

(1)m2-8mn+16n2(2)m2+8mn+16n2;

(3)a2+2ab+b2;(4)a2-2ab+b2.

【學生活動】從逆向思維的角度入手,很快得到下面答案:

解:

(1)m2-8mn+16n2=(m-4n)2;

(2)m2+8mn+16n2=(m+4n)2;

(3)a2+2ab+b2=(a+b)2;

(4)a2-2ab+b2=(a-b)2.

【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.

二、范例學習,應用所學

【例1】把下列各式分解因式:

(1)-4a2b+12ab2-9b3;

(2)8a-4a2-4;

(3)(x+y)2-14(x+y)+49;(4)+n4.

【例2】如果x2+axy+16y2是完全平方,求a的值。

【思路點撥】根據完全平方式的定義,解此題時應分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應求出a的值,即可求出a3.

三、隨堂練習,鞏固深化

課本P170練習第1、2題。

【探研時空】

1、已知x+y=7,xy=10,求下列各式的值。

(1)x2+y2;(2)(x-y)2

2、已知x+=-3,求x4+的值。

四、課堂總結,發(fā)展?jié)撃?/p>

由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:

a2-b2=(a+b)(a-b);

a2±ab+b2=(a±b)2.

在運用公式因式分解時,要注意:

(1)每個公式的形式與特點,通過對多項式的項數(shù)、次數(shù)等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當多項式是二項式時,考慮用平方差公式分解;當多項式是三項時,應考慮用完全平方公式分解;(2)在有些情況下,多項式不一定能直接用公式,需要進行適當?shù)慕M合、變形、代換后,再使用公式法分解;(3)當多項式各項有公因式時,應該首先考慮提公因式,然后再運用公式分解。

五、布置作業(yè),專題突破

2024年初二年級上冊數(shù)學教案范本精選篇15一、教學目標

1、理解分式的基本性質。

2、會用分式的基本性質將分式變形。

二、重點、難點

1、重點:理解分式的基本性質。

2、難點:靈活應用分式的基本性質將分式變形。

3、認知難點與突破方法

教學難點是靈活應用分式的基本性質將分式變形。突破的方法是通過復習分數(shù)的通分、約分總結出分數(shù)的基本性質,再用類比的方法得出分式的基本性質。應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形。

三、練習題的意圖分析

1.P7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。

2.P9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應概念及方法的理解。

3.P11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的`值不變。

“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質的應用之一,所以補充例5。

四、課堂引入

1、請同學們考慮:與相等嗎?與相等嗎?為什么?

2、說出與之間變形的過程,與之間變形的過程,并說出變形依據?

3、提問分數(shù)的基本性質,讓學生類比猜想出分式的基本性質。

五、例題講解

P7例2.填空:

[分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。

P11例3.約分:

[分析]約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結果要是最簡分式。

P11例4.通分:

[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

2024年初二年級上冊數(shù)學教案范本精選篇16教學目標:

1、知識目標:了解圖案最常見的構圖方式:軸對稱、平移、旋轉……,理解簡單圖案設計的意圖。認識和欣賞平移,旋轉在現(xiàn)實生活中的應用,能夠靈活運用軸對稱、平移、旋轉的組合,設計出簡單的圖案。

2、能力目標:經歷收集、欣賞、分析、操作和設計的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論