版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省各地市2023-中考數(shù)學真題分類匯編-03解答題(基礎(chǔ)題)知識點分類②一.實數(shù)的運算(共2小題)1.(2023?眉山)計算:(2)0﹣|1﹣|+3tan30°+(﹣)﹣2.2.(2023?廣安)計算:﹣12024+(﹣)0﹣2cos60°+|﹣3|.二.分式的化簡求值(共1小題)3.(2023?眉山)先化簡:(1﹣),再從﹣2,﹣1,1,2中選擇一個合適的數(shù)作為x的值代入求值.三.一元一次不等式的應(yīng)用(共1小題)4.(2023?眉山)習近平總書記說:“讀書可以讓人保持思想活力,讓人得到智慧啟發(fā),讓人滋養(yǎng)浩然正氣.”某校為提高學生的閱讀品味,現(xiàn)決定購買獲得茅盾文學獎的甲,乙兩種書共100本,已知購買2本甲種書和1本乙種書共需100元;購買3本甲種書和2本乙種書共需165元.(1)求甲,乙兩種書的單價分別為多少元;(2)若學校決定購買以上兩種書的總費用不超過3200元,那么該校最多可以購買甲種書多少本?四.解一元一次不等式組(共1小題)5.(2023?成都)(1)計算:+2sin45°﹣(π﹣3)0+|﹣2|.(2)解不等式組:.五.待定系數(shù)法求反比例函數(shù)解析式(共1小題)6.(2023?宜賓)如圖,在平面直角坐標系xOy中,等腰直角三角形ABC的直角頂點C(3,0),頂點A、B(6,m)恰好落在反比例函數(shù)y=第一象限的圖象上.(1)分別求反比例函數(shù)的表達式和直線AB所對應(yīng)的一次函數(shù)的表達式;(2)在x軸上是否存在一點P,使△ABP周長的值最?。舸嬖?,求出最小值;若不存在,請說明理由.六.反比例函數(shù)與一次函數(shù)的交點問題(共1小題)7.(2023?遂寧)如圖,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象交于A(﹣4,1),B(m,4)兩點.(k1,k2,b為常數(shù))(1)求一次函數(shù)和反比例函數(shù)的解析式;(2)根據(jù)圖象直接寫出不等式k1x+b>的解集;(3)P為y軸上一點,若△PAB的面積為3,求P點的坐標.七.全等三角形的判定與性質(zhì)(共1小題)8.(2023?宜賓)已知:如圖,AB∥DE,AB=DE,AF=DC.求證:∠B=∠E.八.圓周角定理(共1小題)9.(2023?成都)如圖,以△ABC的邊AC為直徑作⊙O,交BC邊于點D,過點C作CE∥AB交⊙O于點E,連接AD,DE,∠B=∠ADE.(1)求證:AC=BC;(2)若tanB=2,CD=3,求AB和DE的長.九.幾何變換綜合題(共1小題)10.(2023?巴中)綜合與實踐.(1)提出問題.如圖1,在△ABC和△ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE,連接BD,連接CE交BD的延長線于點O.①∠BOC的度數(shù)是.②BD:CE=.(2)類比探究.如圖2,在△ABC和△DEC中,∠BAC=∠EDC=90°,且AB=AC,DE=DC,連接AD、BE并延長交于點O.①∠AOB的度數(shù)是;②AD:BE=.(3)問題解決.如圖3,在等邊△ABC中,AD⊥BC于點D,點E在線段AD上(不與A重合),以AE為邊在AD的左側(cè)構(gòu)造等邊△AEF,將△AEF繞著點A在平面內(nèi)順時針旋轉(zhuǎn)任意角度.如圖4,M為EF的中點,N為BE的中點.①說明△MND為等腰三角形.②求∠MND的度數(shù).一十.解直角三角形的應(yīng)用(共1小題)11.(2023?成都)為建設(shè)美好公園社區(qū),增強民眾生活幸福感,某社區(qū)服務(wù)中心在文化活動室墻外安裝遮陽篷,便于社區(qū)居民休憩.如圖,在側(cè)面示意圖中,遮陽篷AB長為5米,與水平面的夾角為16°,且靠墻端離地高BC為4米,當太陽光線AD與地面CE的夾角為45°時,求陰影CD的長.(結(jié)果精確到0.1米;參考數(shù)據(jù):sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)一十一.解直角三角形的應(yīng)用-仰角俯角問題(共1小題)12.(2023?宜賓)渝昆高速鐵路的建成,將會顯著提升宜賓的交通地位.渝昆高速鐵路宜賓臨港長江公鐵兩用大橋(如圖1),橋面采用國內(nèi)首創(chuàng)的公鐵平層設(shè)計.為測量左橋墩底到橋面的距離CD,如圖2.在橋面上點A處,測得A到左橋墩D的距離AD=200米,左橋墩所在塔頂B的仰角∠BAD=45°,左橋墩底C的俯角∠CAD=15°,求CD的長度.(結(jié)果精確到1米.參考數(shù)據(jù):≈1.4,≈1.73)一十二.條形統(tǒng)計圖(共1小題)13.(2023?成都)文明是一座城市的名片,更是一座城市的底蘊.成都市某學校于細微處著眼,于貼心處落地,積極組織師生參加“創(chuàng)建全國文明典范城市志愿者服務(wù)”活動,其服務(wù)項目有“清潔衛(wèi)生”“敬老服務(wù)”“文明宣傳”“交通勸導(dǎo)”,每名參加志愿者服務(wù)的師生只參加其中一項.為了解各項目參與情況,該校隨機調(diào)查了參加志愿者服務(wù)的部分師生,將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.?根據(jù)統(tǒng)計圖信息,解答下列問題:(1)本次調(diào)查的師生共有人,請補全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,求“敬老服務(wù)”對應(yīng)的圓心角度數(shù);(3)該校共有1500名師生,若有80%的師生參加志愿者服務(wù),請你估計參加“文明宣傳”項目的師生人數(shù).一十三.列表法與樹狀圖法(共2小題)14.(2023?宜賓)某校舉辦“我勞動,我快樂,我光榮”活動.為了解該校九年級學生周末在家的勞動情況,隨機調(diào)查了九年級1班的所有學生在家勞動時間(單位:小時),并進行了統(tǒng)計和整理,繪制如圖所示的不完整統(tǒng)計圖.根據(jù)圖表信息回答以下問題:類別勞動時間xA0≤x<1B1≤x<2C2≤x<3D3≤x<4E4≤x(1)九年級1班的學生共有人,補全條形統(tǒng)計圖;(2)若九年級學生共有800人,請估計周末在家勞動時間在3小時及以上的學生人數(shù);(3)已知E類學生中恰好有2名女生3名男生,現(xiàn)從中抽取兩名學生做勞動交流,請用列表或畫樹狀圖的方法,求所抽的兩名學生恰好是一男一女的概率.15.(2023?眉山)某校為落實“雙減”工作,推行“五育并舉”,計劃成立五個興趣活動小組(每個學生只能參加一個活動小組):A.音樂,B.美術(shù),C.體育,D.閱讀,E.人工智能.為了解學生對以上興趣活動的參與情況,隨機抽取了部分學生進行調(diào)查統(tǒng)計,并根據(jù)統(tǒng)計結(jié)果,繪制成了如圖所示的兩幅不完整的統(tǒng)計圖:根據(jù)圖中信息,完成下列問題:(1)①補全條形統(tǒng)計圖(要求在條形圖上方注明人數(shù));②扇形統(tǒng)計圖中的圓心角α的度數(shù)為.(2)若該校有3600名學生,估計該校參加E組(人工智能)的學生人數(shù);(3)該學校從E組中挑選出了表現(xiàn)最好的兩名男生和兩名女生,計劃從這四位同學中隨機抽取兩人參加市青少年人工智能競賽,請用畫樹狀圖或列表的方法求出恰好抽到一名男生一名女生的概率.
四川省各地市2023-中考數(shù)學真題分類匯編-03解答題(基礎(chǔ)題)知識點分類②參考答案與試題解析一.實數(shù)的運算(共2小題)1.(2023?眉山)計算:(2)0﹣|1﹣|+3tan30°+(﹣)﹣2.【答案】6.【解答】解:原式=1﹣(﹣1)+3×+4=1﹣+1++4=6.2.(2023?廣安)計算:﹣12024+(﹣)0﹣2cos60°+|﹣3|.【答案】2﹣.【解答】解:原式=﹣1+1﹣2×+3﹣=﹣1+1﹣1+3﹣=2﹣.二.分式的化簡求值(共1小題)3.(2023?眉山)先化簡:(1﹣),再從﹣2,﹣1,1,2中選擇一個合適的數(shù)作為x的值代入求值.【答案】,1.【解答】解:(1﹣)=?=,∵x≠1且x≠±2,∴當x=﹣1時,原式=1.三.一元一次不等式的應(yīng)用(共1小題)4.(2023?眉山)習近平總書記說:“讀書可以讓人保持思想活力,讓人得到智慧啟發(fā),讓人滋養(yǎng)浩然正氣.”某校為提高學生的閱讀品味,現(xiàn)決定購買獲得茅盾文學獎的甲,乙兩種書共100本,已知購買2本甲種書和1本乙種書共需100元;購買3本甲種書和2本乙種書共需165元.(1)求甲,乙兩種書的單價分別為多少元;(2)若學校決定購買以上兩種書的總費用不超過3200元,那么該校最多可以購買甲種書多少本?【答案】(1)甲種書的單價是35元,乙種書的單價是30元;(2)該校最多可以購買甲種書40本.【解答】解:(1)設(shè)甲種書的單價是x元,乙種書的單價是y元,根據(jù)題意得:,解得:.答:甲種書的單價是35元,乙種書的單價是30元;(2)設(shè)該校購買甲種書m本,則購買乙種書(100﹣m)本,根據(jù)題意得:35m+30(100﹣m)≤3200,解得:m≤40,∴m的最大值為40.答:該校最多可以購買甲種書40本.四.解一元一次不等式組(共1小題)5.(2023?成都)(1)計算:+2sin45°﹣(π﹣3)0+|﹣2|.(2)解不等式組:.【答案】(1)3;(2)﹣4<x≤1.【解答】解:(1)原式=2+2×﹣1+2﹣=2+﹣1+2﹣=3;(2),解不等式①,得x≤1,解不等式②,得x>﹣4,所以原不等式組的解集為﹣4<x≤1.五.待定系數(shù)法求反比例函數(shù)解析式(共1小題)6.(2023?宜賓)如圖,在平面直角坐標系xOy中,等腰直角三角形ABC的直角頂點C(3,0),頂點A、B(6,m)恰好落在反比例函數(shù)y=第一象限的圖象上.(1)分別求反比例函數(shù)的表達式和直線AB所對應(yīng)的一次函數(shù)的表達式;(2)在x軸上是否存在一點P,使△ABP周長的值最?。舸嬖冢蟪鲎钚≈?;若不存在,請說明理由.【答案】(1)反比例函數(shù)的表達式為y=,直線AB所對應(yīng)的一次函數(shù)的表達式為y=﹣x+4;(2)在x軸上存在一點P,使△ABP周長的值最小,周長的最小值為4+2.【解答】解:(1)過A作AT⊥x軸于T,過B作BK⊥x軸于K,如圖:∵△ABC是等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠ACT=90°﹣∠BCK=∠CBK,∵∠ATC=90°=∠CKB,∴△ATC≌△CKB(AAS),∴AT=CK,CT=BK,∵C(3,0),B(6,m),∴AT=CK=6﹣3=3,CT=BK=m,∴OT=3﹣m,∴A(3﹣m,3),∵A(3﹣m,3),B(6,m)恰好落在反比例函數(shù)y=第一象限的圖象上,∴k=3(3﹣m)=6m,∴m=1,k=6,∴反比例函數(shù)的表達式為y=,A(2,3),B(6,1),設(shè)直線AB所對應(yīng)的一次函數(shù)的表達式為y=k'x+b,把A(2,3),B(6,1)代入得:,解得,∴直線AB所對應(yīng)的一次函數(shù)的表達式為y=﹣x+4;(2)在x軸上存在一點P,使△ABP周長的值最小,理由如下:作A(2,3)關(guān)于x軸的對稱點A'(2,﹣3),連接A'B交x軸于P,如圖:∵A(2,3),B(6,1),∴AB==2,∴當AP+BP最小時,△ABP周長最小,∵A,A'關(guān)于x軸對稱,∴AP=A'P,∴當A',P,B共線時,AP+BP最小,△ABP周長也最小,∵A'(2,﹣3),B(6,1),∴A'B==4,∴AP+BP=A'P+BP=A'B=4,∴△ABP周長的最小值為4+2.六.反比例函數(shù)與一次函數(shù)的交點問題(共1小題)7.(2023?遂寧)如圖,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象交于A(﹣4,1),B(m,4)兩點.(k1,k2,b為常數(shù))(1)求一次函數(shù)和反比例函數(shù)的解析式;(2)根據(jù)圖象直接寫出不等式k1x+b>的解集;(3)P為y軸上一點,若△PAB的面積為3,求P點的坐標.【答案】(1)y=x+5,;(2):﹣4<x<﹣1或x>0;(3)(0,3)或(0,7).【解答】解:(1)將點A(﹣4,1)代入之中,得:k2=﹣4,∴反比例函數(shù)的解析式為:,將B(m,4)代入反比例函數(shù)之中,得:m=﹣1,∴點B的坐標為(﹣1,4),將點A(﹣4,1),B(﹣1,4)代入y=k1x+b之中,得:﹣,解得:,∴一次函數(shù)的解析式為:y=x+5.(2)觀察函數(shù)的圖象可知:當﹣4<x<﹣1或x>0時,一次函數(shù)的圖象均在反比例函數(shù)的上方,∴的解集為:﹣4<x<﹣1或x>0.(3)過點A,B分別作y軸的垂線,垂足分別為C,D,∵A(﹣4,1),B(﹣1,4),∴AC=4,OC=1,BD=1,OD=4,∴CD=OD﹣OC=4﹣1=3,∵AC⊥y軸,BD⊥y軸,∴四邊形ACDB為直角梯形,∴,設(shè)點P的坐標為(0,t),∵△PAB的面積為3,∴有以下兩種情況:①點P在線段CD上,∴OP=t,∴DP=OD﹣OP=4﹣t,PC=OP﹣OC=t﹣1,∴,,∴,解得:t=3,∴此時點P的坐標為(0,3);②當P在CD延長線上時,記作P'DP'=t﹣4,P'C=t﹣1,,,又∵S△P'AB=S△P'AC﹣S△P'BD﹣S梯形ACDB,,解得:t=7,此時點P的坐標為(0,7).綜上所述:點P的坐標為(0,3)或(0,7).七.全等三角形的判定與性質(zhì)(共1小題)8.(2023?宜賓)已知:如圖,AB∥DE,AB=DE,AF=DC.求證:∠B=∠E.【答案】證明見解答過程.【解答】證明:∵AF=DC,∴AF+CF=DC+CF,即AC=DF,∵AB∥DE,∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠B=∠E.八.圓周角定理(共1小題)9.(2023?成都)如圖,以△ABC的邊AC為直徑作⊙O,交BC邊于點D,過點C作CE∥AB交⊙O于點E,連接AD,DE,∠B=∠ADE.(1)求證:AC=BC;(2)若tanB=2,CD=3,求AB和DE的長.【答案】(1)證明見解答過程;(2)AB=2;DE=2.【解答】(1)證明:∵∠ADE=∠ACE,∠ADE=∠B,∴∠B=∠ACE,∵CE∥AB,∴∠BAC=∠ACE,∴∠B=∠BAC,∴AC=BC;(2)解:如圖,連接AE,∵∠ADE=∠B,∠AED=∠ACB,∴△ADE∽△ABC,∴=,∵AC為⊙O的直徑,∴∠ADB=∠ADC=90°,∴tanB==2,∴AD=2BD,∵CD=3,∴AC=BC=BD+CD=BD+3,∵AD2+CD2=AC2,∴(2BD)2+32=(BD+3)2,解得:BD=2或BD=0(舍去),∴AD=2BD=4,AB===2,BC=2+3=5,∵=,∴=,∴DE=2.九.幾何變換綜合題(共1小題)10.(2023?巴中)綜合與實踐.(1)提出問題.如圖1,在△ABC和△ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE,連接BD,連接CE交BD的延長線于點O.①∠BOC的度數(shù)是90°.②BD:CE=1:1.(2)類比探究.如圖2,在△ABC和△DEC中,∠BAC=∠EDC=90°,且AB=AC,DE=DC,連接AD、BE并延長交于點O.①∠AOB的度數(shù)是45°;②AD:BE=1:.(3)問題解決.如圖3,在等邊△ABC中,AD⊥BC于點D,點E在線段AD上(不與A重合),以AE為邊在AD的左側(cè)構(gòu)造等邊△AEF,將△AEF繞著點A在平面內(nèi)順時針旋轉(zhuǎn)任意角度.如圖4,M為EF的中點,N為BE的中點.①說明△MND為等腰三角形.②求∠MND的度數(shù).【答案】(1)①∠BOC的度數(shù)是90°,②BD:CE=1:1.(2)①∠AOB的度數(shù)是45°,②.(3)①證明見解答過程,②∠MND=120°.【解答】解:(1)①∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).∴∠ABD=∠ACE,∵∠BAC=90°,∴∠ABC+∠ACB=∠ABD+∠OBC+∠ACB=90°,∴∠ACE+∠OBC+∠ACB=90°,即:∠BCE+∠OBC=90°,∴∠BOC=90°.故∠BOC的度數(shù)是90°.②由①得△BAD≌△CAE,∴BD=CE.故BD:CE=1:1.(2)①∵AB=AC,DE=DC,∴,又∵∠BAC=∠EDC=90°,∴△ABC∽△DEC,∴∠ACB=∠DCB,.∴∠ACE+∠ECB=∠DCA+∠ACE,∴∠ECB=∠DCA.∴△ECB∽△DCA,∴∠CBE=∠CAD,∴∠AOB=180°﹣∠ABO﹣∠BAO=180°﹣∠ABO﹣∠CAD﹣∠BAC=180°﹣∠ABO﹣∠CBE﹣90°=180°﹣45°﹣90°=45°.故∠AOB的度數(shù)是45°.②由①得:△ECB∽△DCA.∴AD:BE=DC:EC,∵∠EDC=90°,且DE=DC,∴∠DCE=45°,∴=cos45°=.∴.(3)①解:連接BF、CE,延長CE交MN于點P,交BF于點O.在等邊△ABC中AB=AC,又∵AD⊥BC于點D,∴D為BC的中點,又∵M為EF的中點,N為BE的中點,∴MN、ND分別是△BEF、△BCE的中位線,∴MN=BF,DN=EC.∵∠FAE=∠BAC=60°,∴∠FAE+∠EAB=∠BAC+∠EAB.∴∠FAB=∠EAC.在△ACE和△ABF中,,∴△ACE≌△ABF(SAS).∴BF=EC.∴MN=DN.∴△MND為等腰三角形.②∵△ACE≌△ABF,∴∠ACE=∠ABF,由(1)(2)規(guī)律可知:∠BOC=60°,∴∠FOC=180°﹣∠BOC=180°﹣60°=120°,又∵BF∥MN,CP∥DN,∴∠MND=∠MPE=∠FOC=120°.一十.解直角三角形的應(yīng)用(共1小題)11.(2023?成都)為建設(shè)美好公園社區(qū),增強民眾生活幸福感,某社區(qū)服務(wù)中心在文化活動室墻外安裝遮陽篷,便于社區(qū)居民休憩.如圖,在側(cè)面示意圖中,遮陽篷AB長為5米,與水平面的夾角為16°,且靠墻端離地高BC為4米,當太陽光線AD與地面CE的夾角為45°時,求陰影CD的長.(結(jié)果精確到0.1米;參考數(shù)據(jù):sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)【答案】陰影CD的長約為2.2米.【解答】解:過A作AT⊥BC于T,AK⊥CE于K,如圖:在Rt△ABT中,BT=AB?sin∠BAT=5×sin16°≈1.4(米),AT=AB?cos∠BAT=5×cos16°≈4.8(米),∵∠ATC=∠C=∠CKA=90°,∴四邊形ATCK是矩形,∴CK=AT=4.8米,AK=CT=BC﹣BT=4﹣1.4=2.6(米),在Rt△AKD中,∵∠ADK=45°,∴DK=AK=2.6米,∴CD=CK﹣DK=4.8﹣2.6=2.2(米),∴陰影CD的長約為2.2米.一十一.解直角三角形的應(yīng)用-仰角俯角問題(共1小題)12.(2023?宜賓)渝昆高速鐵路的建成,將會顯著提升宜賓的交通地位.渝昆高速鐵路宜賓臨港長江公鐵兩用大橋(如圖1),橋面采用國內(nèi)首創(chuàng)的公鐵平層設(shè)計.為測量左橋墩底到橋面的距離CD,如圖2.在橋面上點A處,測得A到左橋墩D的距離AD=200米,左橋墩所在塔頂B的仰角∠BAD=45°,左橋墩底C的俯角∠CAD=15°,求CD的長度.(結(jié)果精確到1米.參考數(shù)據(jù):≈1.4,≈1.73)【答案】CD的長度約為54米.【解答】解:過C作CE⊥AB于E,如圖:∵∠BAD=45°,∴△ABD是等腰直角三角形,∴∠ABD=45°,AD=BD=200,AB=200(米),∴△BCE是等腰直角三角形,∴∠BCE=∠EBC=45°,BE=CE,∵∠ACB=90°﹣∠DAC=75°,∴∠ACE=∠ACB﹣∠ECB=30°,設(shè)AE=x米,則AC=2x米,∴CE=AE=x米,BE=AB﹣AE=(200﹣x)米,∴x=200﹣x,解得x=100﹣100,∴CE=x=300﹣100,∴BC=CE=(600﹣200)米,∴CD=BC﹣BD=400﹣200≈54(米),∴CD的長度約為54米.一十二.條形統(tǒng)計圖(共1小題)13.(2023?成都)文明是一座城市的名片,更是一座城市的底蘊.成都市某學校于細微處著眼,于貼心處落地,積極組織師生參加“創(chuàng)建全國文明典范城市志愿者服務(wù)”活動,其服務(wù)項目有“清潔衛(wèi)生”“敬老服務(wù)”“文明宣傳”“交通勸導(dǎo)”,每名參加志愿者服務(wù)的師生只參加其中一項.為了解各項目參與情況,該校隨機調(diào)查了參加志愿者服務(wù)的部分師生,將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.?根據(jù)統(tǒng)計圖信息,解答下列問題:(1)本次調(diào)查的師生共有300人,請補全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,求“敬老服務(wù)”對應(yīng)的圓心角度數(shù);(3)該校共有1500名師生,若有80%的師生參加志愿者服務(wù),請你估計參加“文明宣傳”項目的師生人數(shù).【答案】(1)300,補全條形統(tǒng)計圖見解答;(2)144°;(3)360名.【解答】解:(1)本次調(diào)查的師生共有:60÷20%=300(人),“文明宣傳”的人數(shù)為:300﹣60﹣120﹣30=90(人),補全條形統(tǒng)計圖如下:故答案為:300;(2)在扇形統(tǒng)計圖中,求“敬老服務(wù)”對應(yīng)的圓心角度數(shù)為:360°×=144°;(3)1500×80%×=360(名),答:估計參加“文明宣傳”項目的師生人數(shù)大約為360名.一十三.列表法與樹狀圖法(共2小題)14.(2023?宜賓)某校舉辦“我勞動,我快樂,我光榮”活動.為了解該校九年級學生周末在家的勞動情況,隨機調(diào)查了九年級1班的所有學生在家勞動時間(單位:小時),并進行了統(tǒng)計和整理,繪制如圖所示的不完整統(tǒng)計圖.根據(jù)圖表信息回答以下問題:類別勞動時間xA0≤x<1B1≤x<2C2≤x<3D3≤x<4E4≤x(1)九年級1班的學生共有50人,補全條形統(tǒng)計圖;(2)若九年級學
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年天津一百中高考語文質(zhì)檢試卷(一)
- 2023年全斷面掘進機項目融資計劃書
- 2023年三醋酸纖維素膜項目融資計劃書
- 《社會文化》課件
- 電力及電機拖動習題庫+參考答案
- 養(yǎng)老院老人生活設(shè)施維修人員考核獎懲制度
- 養(yǎng)老院老人護理評估制度
- 2024年大型企業(yè)第三方社保代繳與員工福利管理服務(wù)協(xié)議3篇
- 施工房屋漏水免責協(xié)議書(2篇)
- 2025年駕考駕考貨運道路從業(yè)資格證
- 環(huán)境工程的課程設(shè)計---填料吸收塔
- 道路運輸達標車輛客車貨車核查記錄表
- 兒童詩兒童詩的欣賞和創(chuàng)作(課件)
- 人力資源管理工作思路(共3頁)
- 五筆常用字根表3746
- 新生兒肺氣漏
- 氣管切開(一次性氣切導(dǎo)管)護理評分標準
- 保安工作日志表
- 姜太公釣魚的歷史故事
- 數(shù)控車床實訓(xùn)圖紙國際象棋圖紙全套
- 電子政務(wù)概論教案
評論
0/150
提交評論