




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
DeepLearningforNaturalLanguageProcessingJonathanMugan,PhDNLPCommunityDayJune4,2015OverviewAboutmeandDeepGrammar(4minutes)IntroductiontoDeepLearningforNLPRecurrentNeuralNetworksDeepLearningandQuestionAnsweringLimitationsofDeepLearningforNLPHowYouCanGetStartedTheimportanceoffindingdumbmistakesTheimportanceoffindingdumbmistakesOverviewAboutmeandDeepGrammar(4minutes)IntroductiontoDeepLearningforNLPRecurrentNeuralNetworksDeepLearningandQuestionAnsweringLimitationsofDeepLearningforNLPHowYouCanGetStartedOverviewAboutmeandDeepGrammar(4minutes)IntroductiontoDeepLearningforNLPRecurrentNeuralNetworksDeepLearningandQuestionAnsweringLimitationsofDeepLearningforNLPHowYouCanGetStartedDeeplearningenablessub-symbolicprocessingSymbolicsystemscanbebrittle.Iboughtacar.<i><bought><a><car><.>Youhavetoremembertorepresent“purchased”and“automobile.”Whatabout“truck”?Howdoyouencodethemeaningoftheentiresentence?DeeplearningbeginswithalittlefunctionItallstartswithahumblelinearfunctioncalledaperceptron.weight1?input1weight2?input2weight3?input3sum?Perceptron:Ifsum>threshold:output1Else:output0Example:Theinputscanbeyourdata.Question:ShouldIbuythiscar?0.2?gasmilage0.3?horepower0.5?numcupholderssum?Perceptron:Ifsum>threshold:buyElse:walkTheselittlefunctionsarechainedtogetherDeeplearningcomesfromchainingabunchoftheselittlefunctionstogether.Chainedtogether,theyarecalledneurons.whereTocreateaneuron,weaddanonlinearitytotheperceptrontogetextrarepresentationalpowerwhenwechainthemtogether.Ournonlinearperceptronis
sometimescalledasigmoid.
PlotofasigmoidSingleartificialneuronOutput,orinputto
nextneuronweight1?input1weight2?input2weight3?input3Three-layeredneuralnetworkAbunchofneuronschainedtogetheriscalledaneuralnetwork.Layer2:hiddenlayer.Called
thisbecauseitisneitherinput
noroutput.Layer3:output.E.g.,cat
ornotacat;buythecaror
walk.Layer1:inputdata.Can
bepixelvaluesorthenumber
ofcupholders.Thisnetworkhasthreelayers.(Someedgeslighter
toavoidclutter.)[16.2,17.3,?52.3,11.1]TrainingwithsupervisedlearningSupervisedLearning:Youshowthenetworkabunchofthingswithalabelssayingwhattheyare,andyouwantthenetworktolearntoclassifyfuturethingswithoutlabels.Example:herearesomepicturesofcats.Tellmewhichoftheseotherpicturesareofcats.Totrainthenetwork,wanttofindtheweightsthatcorrectlyclassifyallofthetrainingexamples.Youhopeitwillworkonthetestingexamples.DonewithanalgorithmcalledBackpropagation[Rumelhartetal.,1986].[16.2,17.3,?52.3,11.1]TrainingwithsupervisedlearningSupervisedLearning:Youshowthenetworkabunchofthingswithalabelssayingwhattheyare,andyouwantthenetworktolearntoclassifyfuturethingswithoutlabels.
[16.2,17.3,?52.3,11.1]Learningislearningthe
parametervalues.WhyGoogle’sdeeplearningtoolboxiscalledTensorFlow.DeeplearningisaddingmorelayersThereisnoexactdefinitionof
whatconstitutes“deeplearning.”
Thenumberofweights(parameters)isgenerallylarge.Somenetworkshavemillionsofparametersthatarelearned.(Someedgesomitted
toavoidclutter.)[16.2,17.3,?52.3,11.1]RecallourstandardarchitectureLayer2:hiddenlayer.Called
thisbecauseitisneitherinput
noroutput.Layer3:output.E.g.,cat
ornotacat;buythecaror
walk.Layer1:inputdata.Can
bepixelvaluesorthenumber
ofcupholders.Isthisacat?[16.2,17.3,?52.3,11.1]NeuralnetswithmultipleoutputsOkay,butwhatkindofcatisit?
Introduceanewnode
calledasoftmax.Probabilitya
housecatProbabilitya
lionProbabilitya
pantherProbabilitya
bobcatJustnormalizetheoutputoverthesumoftheotheroutputs(usingtheexponential).Givesaprobability.[16.2,17.3,?52.3,11.1]Learningwordvectors
Fromthesentence,“Themanranfast.”
Probability
of“fast”Probability
of“slow”Probability
of“taco”Probability
of“bobcat”Learnsavectorforeachwordbasedonthe“meaning”inthesentenceby
tryingtopredictthenextword[Bengioetal.,2003].Thesenumbersupdatedalongwiththeweightsandethevectorrepresentationsofthewords.Comparingvectorandsymbolicrepresentations
Vectorshaveasimilarityscore.Atacoisnotaburritobutsimilar.Symbolscanbethesameornot.AtacoisjustasdifferentfromaburritoasaToyota.Vectorshaveinternalstructure[Mikolovetal.,2013].Italy–Rome=France–ParisKing–Queen=Man–WomanSymbolshavenostructure.Symbolsarearbitrarilyassigned.Meaningrelativetoothersymbols.Vectorsaregroundedinexperience.Meaningrelativetopredictions.Abilitytolearnrepresentationsmakesagentslessbrittle.OverviewAboutmeandDeepGrammar(4minutes)IntroductiontoDeepLearningforNLPRecurrentNeuralNetworksDeepLearningandQuestionAnsweringLimitationsofDeepLearningforNLPHowYouCanGetStartedOverviewAboutmeandDeepGrammar(4minutes)IntroductiontoDeepLearningforNLPRecurrentNeuralNetworksDeepLearningandQuestionAnsweringLimitationsofDeepLearningforNLPHowYouCanGetStartedEncodingsentencemeaningintoavectorh0The“Thepatientfell.”Encodingsentencemeaningintoavectorh0Theh1patient“Thepatientfell.”Encodingsentencemeaningintoavectorh0Theh1patienth2fell“Thepatientfell.”EncodingsentencemeaningintoavectorLikeahiddenMarkovmodel,butdoesn’tmaketheMarkovassumptionandbenefitsfromavectorrepresentation.h0Theh1patienth2fellh3.“Thepatientfell.”DecodingsentencemeaningMachinetranslation,orstructurelearningmoregenerally.
Elh3DecodingsentencemeaningMachinetranslation,orstructurelearningmoregenerally.
Elh3h4DecodingsentencemeaningMachinetranslation,orstructurelearningmoregenerally.
Elh3pacienteh4DecodingsentencemeaningMachinetranslation,orstructurelearningmoregenerally.
Elh3pacienteh4cayóh5.h5[Choetal.,2014]Itkeepsgeneratinguntilitgeneratesastopsymbol.GeneratingimagecaptionsConvolutionalneuralnetworkAnh0angryh1sisterh2.h3[KarpathyandFei-Fei,2015][Vinyalsetal.,2015]Imagecaptionexamples[KarpathyandFei-Fei,2015]See:Attention[Bahdanauetal.,2014]Elh3pacienteh4cayóh5.h5h0Theh1patienth2fellh3.RNNsandStructureLearningThesearesometimescalledseq2seqmodels.Inadditiontomachinetranslationandgeneratingcaptionsforimages,canbeusedtolearnjustaboutanykindofstructureyou’dwant,aslongasyouhavelotsoftrainingdata.OverviewAboutmeandDeepGrammar(4minutes)IntroductiontoDeepLearningforNLPRecurrentNeuralNetworksDeepLearningandQuestionAnsweringLimitationsofDeepLearningforNLPHowYouCanGetStartedOverviewAboutmeandDeepGrammar(4minutes)IntroductiontoDeepLearningforNLPRecurrentNeuralNetworksDeepLearningandQuestionAnsweringLimitationsofDeepLearningforNLPHowYouCanGetStartedDeeplearningandquestionansweringRNNsanswerquestions.WhatisthetranslationofthisphrasetoFrench?Whatisthenextword?Attentionisusefulforquestionanswering.Thiscanbegeneralizedtowhichfactsthelearnershouldpayattentiontowhenansweringquestions.DeeplearningandquestionansweringBobwenthome.Timwenttothejunkyard.Bobpickedupthejar.Bobwenttotown.Whereisthejar?A:townMemoryNetworks[Westonetal.,2014]Updatesmemoryvectorsbasedonaquestionandfindsthebestonetogivetheoutput.Theofficeisnorthoftheyard.Thebathisnorthoftheoffice.Theyardiswestofthekitchen.Howdoyougofromtheofficetothekitchen?A:south,eastNeuralReasoner[Pengetal.,2015]Encodesthequestionandfactsinmanylayers,andthefinallayerisputthroughafunctionthatgivestheanswer.OverviewAboutmeandDeepGrammar(4minutes)IntroductiontoDeepLearningforNLPRecurrentNeuralNetworksDeepLearningandQuestionAnsweringLimitationsofDeepLearningforNLPHowYouCanGetStartedOverviewAboutmeandDeepGrammar(4minutes)IntroductiontoDeepLearningforNLPRecurrentNeuralNetworksDeepLearningandQuestionAnsweringLimitationsofDeepLearningforNLPHowYouCanGetStartedLimitationsofdeeplearningTheencodedmeaningisgroundedwithrespecttootherwords.Thereisnolinkagetothephysicalworld."ICubLugan01Reaching".LicensedunderCCBY-SA3.0viaWikipedia-TheiCubLimitationsofdeeplearningBobwenthome.Timwenttothejunkyard.Bobpickedupthejar.Bobwenttotown.Whereisthejar?A:townDeeplearninghasnounderstandingofwhatitmeansforthejartobeintown.Forexamplethatitcan’talsobeatthejunkyard.OrthatitmaybeinBob’scar,orstillinhishands.Theencodedmeaningisgroundedwithrespecttootherwords.Thereisnolinkagetothephysicalworld.LimitationsofdeeplearningImagineadudestandingonatable.Howwouldacomputerknowthatifyoumovethetableyoualsomovethedude?Likewise,howcouldacomputerknowthatitonlyrainsoutside?Or,asMarvinMinskyasks,howcouldacomputerlearnthatyoucanpullaboxwithastringbutnotpushit?LimitationsofdeeplearningImagineadudestandingonatable.Howwouldacomputerknowthatifyoumovethetableyoualsomovethedude?Likewise,howcouldacomputerknowthatitonlyrainsoutside?Or,asMarvinMinskyasks,howcouldacomputerlearnthatyoucanpullaboxwithastringbutnotpushit?Nooneknowshowtoexplainallofthesesituationstoacompute
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 昆明幼兒師范高等??茖W?!秾I(yè)英語及科技論文寫作》2023-2024學年第一學期期末試卷
- 東北林業(yè)大學《紡織品藝術染色》2023-2024學年第一學期期末試卷
- 福建省福州市八縣一中聯考2025年高三4月高考二模物理試題含解析
- 四川輕化工大學《復合材料C》2023-2024學年第二學期期末試卷
- 山西省大同市2024-2025學年高三下學期第二次仿真模擬物理試題含解析
- 廣東財貿職業(yè)學院《航海英語閱讀》2023-2024學年第二學期期末試卷
- 福福建省泉州市2024-2025學年高三下學期一診模擬物理試題含解析
- 云南能源職業(yè)技術學院《大學日語4》2023-2024學年第二學期期末試卷
- 南通職業(yè)大學《運輸組織學》2023-2024學年第二學期期末試卷
- 安徽省安慶市潛山市第二中學2024-2025學年高三預測密卷(新課標II卷)語文試題試卷含解析
- 改革開放課件教案
- 自行車采購合同模板
- 《美的集團股權激勵實施過程及實施效果分析案例(論文)》14000字
- 2024年四川省南充市中考生物試卷真題(含官方答案及解析)
- JT-T-524-2019公路工程水泥混凝土用纖維
- DL-T5501-2015凍土地區(qū)架空輸電線路基礎設計技術規(guī)程
- 雞毛信的故事-紅色故事課件
- 代理記賬業(yè)務規(guī)范-代理記賬業(yè)務內部規(guī)范制度
- 川教版信息技術六年級下冊全冊教案【新教材】
- 中學生學習動機量表(MSMT)
- 中級考試外科基礎題
評論
0/150
提交評論