內(nèi)蒙古包頭市北方重工集團(tuán)三中2025屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第1頁
內(nèi)蒙古包頭市北方重工集團(tuán)三中2025屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第2頁
內(nèi)蒙古包頭市北方重工集團(tuán)三中2025屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第3頁
內(nèi)蒙古包頭市北方重工集團(tuán)三中2025屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第4頁
內(nèi)蒙古包頭市北方重工集團(tuán)三中2025屆高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

內(nèi)蒙古包頭市北方重工集團(tuán)三中2025屆高二數(shù)學(xué)第一學(xué)期期末檢測試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的兩個頂點(diǎn)分別為A、B,點(diǎn)P為雙曲線上除A、B外任意一點(diǎn),且點(diǎn)P與點(diǎn)A、B連線的斜率為,若,則雙曲線的離心率為()A. B.C.2 D.32.設(shè)是可導(dǎo)函數(shù),當(dāng),則()A.2 B.C. D.3.某地為應(yīng)對極端天氣搶險(xiǎn)救災(zāi),需調(diào)用A,B兩種卡車,其中A型卡車x輛,B型卡車y輛,以備不時之需,若x和y滿足約束條件則最多需調(diào)用卡車的數(shù)量為()A.7 B.9C.13 D.144.幾何學(xué)史上有一個著名的米勒問題:“設(shè)點(diǎn)、是銳角的一邊上的兩點(diǎn),試在邊上找一點(diǎn),使得最大的.”如圖,其結(jié)論是:點(diǎn)為過、兩點(diǎn)且和射線相切的圓的切點(diǎn).根據(jù)以上結(jié)論解決一下問題:在平面直角坐標(biāo)系中,給定兩點(diǎn),,點(diǎn)在軸上移動,當(dāng)取最大值時,點(diǎn)的橫坐標(biāo)是()A.B.C.或D.或5.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的體積為()A.8 B.16C. D.6.設(shè),則“”是“直線與直線平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.?dāng)?shù)列中,滿足,,設(shè),則()A. B.C. D.8.已知空間向量,,則()A. B.19C.17 D.9.已知數(shù)列滿足,,.設(shè),若對于,都有恒成立,則最大值為A.3 B.4C.7 D.910.拋擲兩枚質(zhì)地均勻的硬幣,設(shè)事件“第一枚硬幣正面朝上”,事件“第二枚硬幣反面朝上”,則下列結(jié)論中正確的為()A.與互為對立事件 B.與互斥C與相等 D.11.在平面直角坐標(biāo)系xOy中,雙曲線(,)的左、右焦點(diǎn)分別為,,點(diǎn)M是雙曲線右支上一點(diǎn),,且,則雙曲線的離心率為()A. B.C. D.12.設(shè),向量,,,且,,則()A. B.C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.達(dá)?芬奇認(rèn)為:和音樂一樣,數(shù)學(xué)和幾何“包含了宇宙的一切”,從年輕時起,他就本能地把這些主題運(yùn)用在作品中,布達(dá)佩斯的伊帕姆維澤蒂博物館收藏的達(dá)?芬奇方磚,在正六邊形上畫了具有視覺效果的正方體圖案(如圖1),把三片這樣的達(dá)?芬奇方磚形成圖2的組合,這個組合表達(dá)了圖3所示的幾何體.若圖3中每個正方體的邊長為1,則點(diǎn)到直線的距離是__________.14.在空間直角坐標(biāo)系O-xyz中,平面OAB的一個法向量為=(2,-2,1),已知點(diǎn)P(-1,3,2),則點(diǎn)P到平面OAB的距離d等于__________________15.已知函數(shù)在R上連續(xù)且可導(dǎo),為偶函數(shù)且,其導(dǎo)函數(shù)滿足,則不等式的解集為___.16.函數(shù)在區(qū)間上的最小值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)平面直角坐標(biāo)系中,曲線與坐標(biāo)軸交點(diǎn)都在圓上.(1)求圓的方程;(2)圓與直線交于,兩點(diǎn),在圓上是否存在一點(diǎn),使得四邊形為菱形?若存在,求出此時直線的方程;若不存在,說明理由.18.(12分)已知橢圓的離心率為,短軸長為2(1)求橢圓的方程;(2)設(shè)過點(diǎn)且斜率為的直線與橢圓交于不同的兩點(diǎn),,求當(dāng)?shù)拿娣e取得最大值時的值19.(12分)如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,,,(1)求證:;(2)求直線與平面所成角的正弦值;(3)線段上是否存在點(diǎn),使得直線平面?若存在,求的值;若不存在,請說明理由20.(12分)已知橢圓C:的離心率為,點(diǎn)和點(diǎn)都在橢圓C上,直線PA交x軸于點(diǎn)M(1)求橢圓C的方程,并求點(diǎn)M的坐標(biāo)(用m,n表示);(2)設(shè)O為原點(diǎn),點(diǎn)B與點(diǎn)A關(guān)于x軸對稱,直線PB交x軸于點(diǎn)N,問:y軸上是否存在點(diǎn)Q(不與O重合),使得?若存在,求點(diǎn)Q的坐標(biāo),若不存在,說明理由21.(12分)如圖所示,在四棱錐中,底面是正方形,側(cè)棱底面,,是的中點(diǎn),過點(diǎn)作交于點(diǎn).求證:(1)平面;(2)平面.22.(10分)已知圓C:的半徑為1(1)求實(shí)數(shù)a的值;(2)判斷直線l:與圓C是否相交?若不相交,請說明理由;若相交,請求出弦長

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)題意設(shè)設(shè),根據(jù)題意得到,進(jìn)而求得離心率【詳解】根據(jù)題意得到設(shè),因?yàn)?,所以,所以,則故選:C.2、C【解析】由導(dǎo)數(shù)的定義可得,即可得答案【詳解】根據(jù)題意,,故.故選:C3、B【解析】畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義即可求解【詳解】設(shè)調(diào)用卡車的數(shù)量為z,則,其中x和y滿足約束條件,作出可行域如圖所示:當(dāng)目標(biāo)函數(shù)經(jīng)過時,縱截距最大,最大.故選:B4、A【解析】根據(jù)米勒問題的結(jié)論,點(diǎn)應(yīng)該為過點(diǎn)、的圓與軸的切點(diǎn),設(shè)圓心的坐標(biāo)為,寫出圓的方程,并將點(diǎn)、的坐標(biāo)代入可求出點(diǎn)的橫坐標(biāo).【詳解】解:設(shè)圓心的坐標(biāo)為,則圓的方程為,將點(diǎn)、的坐標(biāo)代入圓的方程得,解得或(舍去),因此,點(diǎn)的橫坐標(biāo)為,故選:A.5、C【解析】畫出直觀圖,利用椎體體積公式進(jìn)行求解.【詳解】畫出直觀圖,為四棱錐A-BCDE,其中BC=4,BE=2,AE=2,且BE,AE,DE兩兩垂直,故體積為.故選:C6、A【解析】根據(jù)兩直線平行的充要條件求出a的值,然后可判斷.【詳解】當(dāng)時,,所以兩直線平行;若兩直線平行,則且,解得或,所以,“”是“直線與直線平行”的充分不必要條件.故選:A7、C【解析】由遞推公式可歸納得,由此可以求出的值【詳解】因?yàn)?,,所以,,,因此故選C【點(diǎn)睛】本題主要考查利用數(shù)列的遞推式求值和歸納推理思想的應(yīng)用,意在考查學(xué)生合情推理的意識和數(shù)學(xué)建模能力8、D【解析】先求出的坐標(biāo),再求出其?!驹斀狻恳?yàn)?,,所以,故,故選:D.9、A【解析】整理數(shù)列的通項(xiàng)公式有:,結(jié)合可得數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,則,,原問題即:恒成立,當(dāng)時,,即>3,綜上可得:的最大值為3.本題選擇A選項(xiàng)點(diǎn)睛:數(shù)列的遞推關(guān)系是給出數(shù)列的一種方法,根據(jù)給出的初始值和遞推關(guān)系可以依次寫出這個數(shù)列的各項(xiàng),由遞推關(guān)系求數(shù)列的通項(xiàng)公式,常用的方法有:①求出數(shù)列的前幾項(xiàng),再歸納猜想出數(shù)列的一個通項(xiàng)公式;②將已知遞推關(guān)系式整理、變形,變成等差、等比數(shù)列,或用累加法、累乘法、迭代法求通項(xiàng)10、D【解析】利用互斥事件和對立事件的定義分析判斷即可【詳解】因?yàn)閽仈S兩枚質(zhì)地均勻的硬幣包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣正面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上,4種情況,其中事件包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上2種情況,事件包含第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上2種情況,所以與不互斥,也不對立,也不相等,,所以ABC錯誤,D正確,故選:D11、A【解析】本題考查雙曲線的定義、幾何性質(zhì)及直角三角形的判定即可解決.【詳解】因?yàn)?,,所以在中,邊上的中線等于的一半,所以.因?yàn)椋钥稍O(shè),,則,解得,所以,由雙曲線的定義得,所以雙曲線的離心率故選:A12、C【解析】根據(jù)空間向量垂直與平行的坐標(biāo)表示,求得的值,得到向量,進(jìn)而求得,得到答案.【詳解】由題意,向量,,,因?yàn)椋傻?,解得,即,又因?yàn)?,可得,解得,即,可得,所?故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意,求得△的三條邊長,在三角形中求邊邊上的高線即可.【詳解】根據(jù)題意,延長交于點(diǎn),連接,如下所示:在△中,容易知:;同理,,滿足,設(shè)點(diǎn)到直線的距離為,由等面積法可知:,解得,即點(diǎn)到直線的距離是.故答案為:.14、2【解析】O是平面OAB上一個點(diǎn),設(shè)點(diǎn)P到平面OAB的距離為d,則d=∵=(-1,3,2).(2,-2,1)=-6,∴d==2即點(diǎn)P到平面OAB的距離為2考點(diǎn):空間向量在立體幾何中的運(yùn)用15、【解析】由已知條件可得圖象關(guān)于對稱,在上遞增,在上遞減,然后分四種情況討論求解即可【詳解】因?yàn)闉榕己瘮?shù),所以的圖象關(guān)于軸對稱,所以的圖象關(guān)于對稱,因?yàn)椋援?dāng)時,,當(dāng)時,,所以在上遞增,在上遞減,由,得,或,或,或,解得,或,或,或,綜上,,所以等式的解集為故答案為:16、【解析】先對函數(shù)求導(dǎo)判斷其單調(diào)性,然后利用單調(diào)性求函數(shù)的最小值【詳解】解:由,得,當(dāng)且僅當(dāng)時取等號,即取等號,因?yàn)?,所以函?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,函數(shù)取得最小值0,故答案為:0三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,直線方程為或.【解析】(1)利用待定系數(shù)法即求;(2)利用直線與圓的位置關(guān)系可得,然后利用菱形的性質(zhì)可得圓心到直線的距離,即得.【小問1詳解】曲線與軸的交點(diǎn)為,與軸的交點(diǎn)為,,設(shè)圓的方程為,則,解得.∴圓的方程為;【小問2詳解】∵圓與直線交于,兩點(diǎn),圓化為,圓心坐標(biāo)為,半徑為.∴圓心到直線的距離,解得.假設(shè)存在點(diǎn),使得四邊形為菱形,則與互相平分,∴圓心到直線的距離,即,解得,經(jīng)驗(yàn)證滿足條件.∴存在點(diǎn),使得四邊形為菱形,此時的直線方程為或.18、(1);(2).【解析】(1)由短軸長得,由離心率處也的關(guān)系,從而可求得,得橢圓方程;(2)設(shè),,直線的方程為,代入橢圓方程應(yīng)用韋達(dá)定理得,由弦長公式得弦長,求出原點(diǎn)到直線的距離,得出三角形面積為的函數(shù),用換元法,基本不等式求得最大值,得值【詳解】解:(1)由題意得,,所以,,橢圓的方程為(2)直線的方程為,代入橢圓的方程,整理得由題意,,設(shè),則,弦長,點(diǎn)到直線的距離,所以的面積,令,則,當(dāng)且僅當(dāng)時取等號.所以,對應(yīng)的,可解得,滿足題意19、(1)證明見解析(2)(3)存在點(diǎn),使得平面,且【解析】(1)由面面垂直的性質(zhì)可得平面,再由線面垂直的性質(zhì)可證得結(jié)論,(2)可證得兩兩垂直,所以分別以為軸,軸,軸建立空間直角坐標(biāo)系,利用空間向量求解,(3)設(shè),然后利用空間向量求解【小問1詳解】證明:因?yàn)闉檎叫危杂忠驗(yàn)槠矫嫫矫?,且平面平面,所以平面平面所以;【小?詳解】由(1)可知,平面,所以,因?yàn)?,所以兩兩垂直分別以為軸,軸,軸建立空間直角坐標(biāo)系(如圖)因?yàn)椋?,所以,設(shè)平面的一個法向量為,則,即令,則,;所以設(shè)直線與平面所成角為,則直線與平面所成角為的正弦值為;【小問3詳解】設(shè),易知設(shè),則,所以,所以,所以設(shè)平面的一個法向量為,則,因?yàn)椋粤?,則,所以在線段上存在點(diǎn),使得平面等價(jià)于存在,使得因?yàn)椋?,所以,解得,所以線段上存在點(diǎn),使得平面,且20、(1),;(2)存在或,使得,理由見解析.【解析】(1)根據(jù)離心率,及求出,,進(jìn)而得到橢圓方程及用m,n表示點(diǎn)M的坐標(biāo);(2)假設(shè)存在,根據(jù)得到,表達(dá)出點(diǎn)坐標(biāo),得到,結(jié)合得到,從而求出答案.【小問1詳解】由離心率可知:,又,,解得:,,故橢圓C:,直線PA為:,令得:,所以;【小問2詳解】存在或,使得,理由如下:假設(shè),使得,則,其中,直線:,令得:,則,,解得:,其中,故,所以,所以或21、(1)證明見解析;(2)證明見解析.【解析】(1)連結(jié)、,交于點(diǎn),連結(jié),通過即可證明;(2)通過,

可證平面,即得,進(jìn)而通過平面得,結(jié)合即證.詳解】證明:(1)連結(jié)、,交于點(diǎn),連結(jié),底面正方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論