




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
廣西欽州港經(jīng)濟技術(shù)開發(fā)區(qū)中學(xué)2025屆數(shù)學(xué)高一上期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),,若,則的最小值為()A. B.6C. D.2.下列函數(shù)中,是奇函數(shù),又在定義域內(nèi)為減函數(shù)是()A. B.C. D.3.某工廠產(chǎn)生的廢氣經(jīng)過濾后排放,過濾過程中廢氣的污染物含量P(單位:)與時間t(單位:h)間的關(guān)系為,其中,k是常數(shù).已知當(dāng)時,污染物含量降為過濾前的,那么()A. B.C. D.4.若函數(shù)的三個零點分別是,且,則()A. B.C. D.5.已知,,則的值等于()A. B.C. D.6.圓的圓心和半徑為()A.(1,1)和11 B.(-1,-1)和11C.(-1,-1)和 D.(1,1)和7.若a2+b2=2c2(c≠0),則直線ax+by+c=0被圓x2+y2=1所截得的弦長為A. B.1C. D.8.函數(shù)的定義域為,且為奇函數(shù),當(dāng)時,,則函數(shù)的所有零點之和是()A.2 B.4C.6 D.89.如圖所示的程序框圖中,輸入,則輸出的結(jié)果是A.1 B.2C.3 D.410.設(shè)集合,則()A.(1,2] B.[3,+∞)C.(﹣∞,1]∪(2,+∞) D.(﹣∞,1]∪[3,+∞)二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)滿足下列四個條件中的三個:①函數(shù)是奇函數(shù);②函數(shù)在區(qū)間上單調(diào)遞增;③;④在y軸右側(cè)函數(shù)的圖象位于直線上方,寫出一個符合要求的函數(shù)________________________.12.已知向量,,若,,,則的值為__________13.已知偶函數(shù)在單調(diào)遞減,.若,則的取值范圍是__________.14.已知函數(shù)則的值等于____________.15.已知直線經(jīng)過點,且與直線平行,則直線的方程為__________16.如圖,網(wǎng)格紙上正方形小格的邊長為1,圖中粗線畫出的是某三棱錐的三視圖,則該三棱錐的體積為__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),不等式解集為,設(shè)(1)若存在,使不等式成立,求實數(shù)的取值范圍;(2)若方程有三個不同的實數(shù)解,求實數(shù)的取值范圍18.已知函數(shù),()求函數(shù)的單調(diào)區(qū)間;()若函數(shù)在上有兩個零點,求實數(shù)的取值范圍19.某高校的入學(xué)面試中有3道難度相當(dāng)?shù)念}目,李明答對每道題的概率都是0.6,若每位面試者都有三次機會,一旦答對抽到的題目,則面試通過,否則就一直抽題到第三次為止.用Y表示答對題目,用N表示沒有答對的題目,假設(shè)對抽到的不同題目能否答對是獨立的,那么:(1)在圖的樹狀圖中填寫樣本點,并寫出樣本空間;(2)求李明最終通過面試的概率.20.如圖,三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC為正三角形,D為AC中點(1)求證:直線AB1∥平面BC1D;(2)求證:平面BC1D⊥平面ACC1A121.如圖,已知直角梯形中,且,又分別為的中點,將△沿折疊,使得.(Ⅰ)求證:AE⊥平面CDE;(Ⅱ)求證:FG∥平面BCD;(Ⅲ)在線段AE上找一點R,使得平面BDR⊥平面DCB,并說明理由
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由已知可得,將代數(shù)式與相乘,展開后利用基本不等式可求得所求代數(shù)式的最小值.【詳解】,,,由可得,所以,,當(dāng)且僅當(dāng)時,等號成立.因此,的最小值為.故選:C.【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.2、C【解析】是非奇非偶函數(shù),在定義域內(nèi)為減函數(shù);是奇函數(shù),在定義域內(nèi)不單調(diào);y=-x3是奇函數(shù),又在定義域內(nèi)為減函數(shù);非奇非偶函數(shù),在定義域內(nèi)為減函數(shù);故選C3、C【解析】根據(jù)題意列出指數(shù)式方程,利用指數(shù)與對數(shù)運算公式求出的值.【詳解】由題意得:,即,兩邊取對數(shù),,解得:.故選:C4、D【解析】利用函數(shù)的零點列出方程,再結(jié)合,得出關(guān)于的不等式,解之可得選項【詳解】因為函數(shù)的三個零點分別是,且,所以,,解得,所以函數(shù),所以,又,所以,故選:D【點睛】關(guān)鍵點睛:本題考查函數(shù)的零點與方程的根的關(guān)系,關(guān)鍵在于準(zhǔn)確地運用零點存在定理5、B【解析】由題可分析得到,由差角公式,將值代入求解即可【詳解】由題,,故選:B【點睛】本題考查正切的差角公式的應(yīng)用,考查已知三角函數(shù)值求三角函數(shù)值問題6、D【解析】根據(jù)圓的標(biāo)準(zhǔn)方程寫出圓心和半徑即可.【詳解】因,所以圓心坐標(biāo)為,半徑為,故選:D7、D【解析】因為,所以設(shè)弦長為,則,即.考點:本小題主要考查直線與圓的位置關(guān)系——相交.8、B【解析】根據(jù)題意可知圖象關(guān)于點中心對稱,由的解析式求出時的零點,根據(jù)對稱性即可求出時的零點,即可求解.【詳解】因為為奇函數(shù),所以函數(shù)的圖象關(guān)于點中心對稱,將的圖象向右平移個單位可得的圖象,所以圖象關(guān)于點中心對稱,當(dāng)時,,令解得:或,因為函數(shù)圖象關(guān)于點中心對稱,則當(dāng)時,有兩解,為或,所以函數(shù)的所有零點之和是,故選:B第II卷(非選擇題9、B【解析】輸入x=2后,該程序框圖的執(zhí)行過程是:輸入x=2,x=2>1成立,y==2,輸出y=2選B.10、C【解析】由題意分別計算出集合的補集和集合,然后計算出結(jié)果.【詳解】解:∵A=(1,3),∴=(﹣∞,1]∪[3,+∞),∵,∴x﹣2>0,∴x>2,∴B=(2,+∞),∴(﹣∞,1]∪(2,+∞),故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】滿足①②④的一個函數(shù)為,根據(jù)奇偶性以及單調(diào)性,結(jié)合反比例函數(shù)的性質(zhì)證明①②④.【詳解】滿足①②④對于①,函數(shù)的定義域為關(guān)于原點對稱,且,即為奇函數(shù);對于②,任取,且因為,所以,即函數(shù)在區(qū)間上單調(diào)遞增;對于④,令,當(dāng)時,,即在y軸右側(cè)函數(shù)的圖象位于直線上方故答案為:【點睛】關(guān)鍵點睛:解決本題的關(guān)鍵在于利用定義證明奇偶性以及單調(diào)性.12、C【解析】分析:由,,,可得向量與平行,且,從而可得結(jié)果.詳解:∵,,,∴向量與平行,且,∴.故答案為.點睛:本題主要考查共線向量的坐標(biāo)運算,平面向量的數(shù)量積公式,意在考查對基本概念的理解與應(yīng)用,屬于中檔題13、【解析】因為是偶函數(shù),所以不等式,又因為在上單調(diào)遞減,所以,解得.考點:本小題主要考查抽象函數(shù)的奇偶性與單調(diào)性,考查絕對值不等式的解法,熟練基礎(chǔ)知識是關(guān)鍵.14、18【解析】根據(jù)分段函數(shù)定義計算【詳解】故答案為:1815、【解析】設(shè)與直線平行的直線,將點代入得.即所求方程為16、1【解析】由圖可知,該三棱錐的體積為V=三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由不等式的解集為可知是方程的兩個根,即可求出,根據(jù)的單調(diào)性求出其在的最大值,即可得出m的范圍;(2)方程可化為,令,則有兩個不同的實數(shù)解,,根據(jù)函數(shù)性質(zhì)可列出不等式求解.【詳解】(1)∵不等式的解集為∴,是方程的兩個根∴,解得.∴則∴存在,使不等式成立,等價于在上有解,而在時單調(diào)遞增,∴∴的取值范圍為(2)原方程可化為令,則,則有兩個不同的實數(shù)解,,其中,,或,記,則①,解得或②,不等式組②無實數(shù)解∴實數(shù)的取值范圍為【點睛】本題考查一元二次不等式的解集與方程的根的關(guān)系,考查函數(shù)的單調(diào)性,考查利用函數(shù)性質(zhì)解決方程解的情況,屬于較難題.18、(1)在上單調(diào)遞增,在上單調(diào)遞減;(2).【解析】(1)本題可根據(jù)正弦函數(shù)單調(diào)性得出結(jié)果;(2)可令,通過計算得出或,然后根據(jù)在上有兩個零點即可得出結(jié)果.【詳解】(1)令,解得,令,解得,故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.(2),令,則,,故或,解得或,因為在上有兩個零點,所以,解得,故實數(shù)的取值范圍為.19、(1)(2)【解析】(1)根據(jù)樹狀圖表示出樣本空間;(2)先計算李明未通過面試的概率,再由對立事件的計算公式求出通過面試的概率.【小問1詳解】由題意,樣本空間為.樣本點的填寫如圖所示,【小問2詳解】可知李明未通過面試的概率為,所以李明通過面試的概率為20、(1)見解析;(2)見解析.【解析】(1)連接交于點,連接,可得為中位線,,結(jié)合線面平行的判定定理,得平面;(2)由底面,得,正三角形中,中線,結(jié)合線面垂直的判定定理,得平面,最后由面面垂直的判定定理,證出平面平面.【詳解】(1)連接交于點,連接,則點為的中點為中點,得為中位線,,平面平面,∴直線平面;(2)證明:底面,,∵底面正三角形,是中點,平面,平面,∴平面平面【點睛】本題考查了直三棱柱的性質(zhì),線面平行的判定定理、面面垂直的判定定理,,屬于中檔題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面.21、(Ⅰ)(Ⅱ)(Ⅲ)見解析【解析】(Ⅰ)(Ⅱ)利用判定定理證明線面平行時,關(guān)鍵是在平面內(nèi)找一條與已知直線平行的直線,解題時可先直觀判斷平面內(nèi)是否已有,若沒有,則需作出該直線,??紤]三角形的中位線、平行四邊形的對邊或過平行線分線段成比例等.證明直線和平面垂直的常用方法:(1)利用判定定理.(2)利用判定定理的推論.(3)利用面面平行的性質(zhì).(4)利用面面垂直的性質(zhì).(Ⅲ)判定面面垂直的方法(1)面面垂直的定義,即證兩平面所成的二面角為直角;(2)面面垂直的判定定理試題解析:(1)由已知得DE⊥AE,AE⊥EC.∵DE∩EC=E,DE、EC?平面DCE.∴AE⊥平面CDE.(2)取AB中點H,連接GH、FH,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年心理咨詢師之心理咨詢師基礎(chǔ)知識考試題庫
- 2025年教師資格之幼兒保教知識與能力考試題庫
- 火力發(fā)電廠施工中的安全事故應(yīng)急預(yù)案編制考核試卷
- 種子萌發(fā)促進技術(shù)研究考核試卷
- 航天器智能制造與生產(chǎn)線優(yōu)化考核試卷
- 海洋聲學(xué)探測技術(shù)考核試卷
- 石膏裝飾品制造考核試卷
- 派遣員工職業(yè)安全與健康保障考核試卷
- 電氣設(shè)備環(huán)境評估考核試卷
- 港口物流園區(qū)規(guī)劃與運營管理考核試卷
- Q∕GDW 12165-2021 高海拔地區(qū)運維檢修裝備配置規(guī)范
- 現(xiàn)代風(fēng)險導(dǎo)向?qū)徲嬙谔旌鈺嫀熓聞?wù)所的應(yīng)用研究
- JGJ107-2016鋼筋機械連接技術(shù)規(guī)程
- 婦科醫(yī)生進修匯報課件
- 動態(tài)分析與設(shè)計實驗報告總結(jié)
- 2024年江蘇省泰州市海陵區(qū)中考一模數(shù)學(xué)試卷
- 從汽車檢測看低空飛行器檢測發(fā)展趨勢
- DB32T 4740-2024 耕地和林地?fù)p害程度鑒定規(guī)范
- 五一節(jié)假日安全生產(chǎn)培訓(xùn)
- 中考英語二輪復(fù)習(xí)課件:中考解題技巧-讀寫綜合
- 《鐵路基本安全知識》課程標(biāo)準(zhǔn)
評論
0/150
提交評論