版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川涼山州2025屆高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若圓與圓相切,則的值為()A. B.C.或 D.或2.已知f(x)是定義在R上的偶函數(shù),當(dāng)時(shí),,且f(-1)=0,則不等式的解集是()A. B.C. D.3.現(xiàn)有60瓶飲料,編號(hào)從1到60,若用系統(tǒng)抽樣的方法從中抽取6瓶進(jìn)行檢驗(yàn),則所抽取的編號(hào)可能為()A.3,13,23,33,43,53 B.2,14,26,38,40,52C.5,8,31,36,48,54 D.5,10,15,20,25,304.如圖是等軸雙曲線形拱橋,現(xiàn)拱頂距離水面6米,水面寬米,若水面下降6米,則水面寬()A.米 B.米C.米 D.米5.已知橢圓和雙曲線有共同焦點(diǎn),是它們一個(gè)交點(diǎn),且,記橢圓和雙曲線的離心率分別為,則的最大值為A.3 B.2C. D.6.若連續(xù)拋擲兩次骰子得到的點(diǎn)數(shù)分別為m,n,則點(diǎn)P(m,n)在直線x+y=4上的概率是()A. B.C. D.7.己知F為拋物線的焦點(diǎn),過(guò)F作兩條互相垂直的直線,,直線與C交于A、B兩點(diǎn),直線與C交于D、E兩點(diǎn),則的最小值為()A.24 B.22C.20 D.168.命題“對(duì)任何實(shí)數(shù),都有”的否定形式是()A.,使得B.,使得C.,使得D.,使得9.在四棱錐P-ABCD中,底面ABCD,,,點(diǎn)E為PA的中點(diǎn),,,,則點(diǎn)B到平面PCD的距離為()A. B.C. D.10.已知雙曲線的離心率為2,則C的漸近線方程為()A. B.C. D.11.如圖,在平行六面體中,AC與BD的交點(diǎn)為O,點(diǎn)M在上,且,則下列向量中與相等的向量是()A. B.C. D.12.從裝有2個(gè)紅球和2個(gè)白球的袋內(nèi)任取2個(gè)球,那么互斥而不對(duì)立的兩個(gè)事件是()A.取出的球至少有1個(gè)紅球;取出的球都是紅球B.取出的球恰有1個(gè)紅球;取出的球恰有1個(gè)白球C.取出的球至少有1個(gè)紅球;取出的球都是白球D.取出的球恰有1個(gè)白球;取出的球恰有2個(gè)白球二、填空題:本題共4小題,每小題5分,共20分。13.橢圓C:的左、右焦點(diǎn)分別為,,P為橢圓上異于左右頂點(diǎn)的任意一點(diǎn),、的中點(diǎn)分別為M、N,O為坐標(biāo)原點(diǎn),四邊形OMPN的周長(zhǎng)為4,則的周長(zhǎng)是_____14.若平面法向量,直線的方向向量為,則與所成角的大小為_(kāi)__________.15.若,則___16.如圖,AD與BC是三棱錐中互相垂直的棱,,(c為常數(shù)).若,則實(shí)數(shù)的取值范圍為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓(1)若直線與圓C相交于A、B兩點(diǎn),當(dāng)弦長(zhǎng)最短時(shí),求直線l的方程;(2)若與圓C相外切且與y軸相切的圓的圓心記為D,求D點(diǎn)的軌跡方程18.(12分)平面直角坐標(biāo)系中,曲線與坐標(biāo)軸交點(diǎn)都在圓上.(1)求圓的方程;(2)圓與直線交于,兩點(diǎn),在圓上是否存在一點(diǎn),使得四邊形為菱形?若存在,求出此時(shí)直線的方程;若不存在,說(shuō)明理由.19.(12分)在中,a,b,c分別是內(nèi)角A,B,C的對(duì)邊,滿足.(1)求A;(2)若,求面積的最大值.20.(12分)為了保證我國(guó)東海油氣田海域海上平臺(tái)的生產(chǎn)安全,海事部門在某平臺(tái)O的北偏西45°方向km處設(shè)立觀測(cè)點(diǎn)A,在平臺(tái)O的正東方向12km處設(shè)立觀測(cè)點(diǎn)B,規(guī)定經(jīng)過(guò)O、A、B三點(diǎn)的圓以及其內(nèi)部區(qū)域?yàn)榘踩A(yù)警區(qū).如圖所示:以O(shè)為坐標(biāo)原點(diǎn),O的正東方向?yàn)閤軸正方向,建立平面直角坐標(biāo)系(1)試寫出A,B的坐標(biāo),并求兩個(gè)觀測(cè)點(diǎn)A,B之間的距離;(2)某日經(jīng)觀測(cè)發(fā)現(xiàn),在該平臺(tái)O正南10kmC處,有一艘輪船正以每小時(shí)km的速度沿北偏東45°方向行駛,如果航向不變,該輪船是否會(huì)進(jìn)入安全預(yù)警區(qū)?如果不進(jìn)入,請(qǐng)說(shuō)明理由;如果進(jìn)入,則它在安全警示區(qū)內(nèi)會(huì)行駛多長(zhǎng)時(shí)間?21.(12分)已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知,經(jīng)過(guò)點(diǎn)的直線與橢圓交于、兩點(diǎn),若原點(diǎn)到直線的距離為,且,求直線的方程.22.(10分)已知函數(shù)(a為常數(shù))(1)討論函數(shù)的單調(diào)性;(2)不等式在上恒成立,求實(shí)數(shù)a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】分類討論:當(dāng)兩圓外切時(shí),圓心距等于半徑之和;當(dāng)兩圓內(nèi)切時(shí),圓心距等于半徑之差,即可求解.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為.①當(dāng)兩圓外切時(shí),有,此時(shí).②當(dāng)兩圓內(nèi)切時(shí),有,此時(shí).綜上,當(dāng)時(shí)兩圓外切;當(dāng)時(shí)兩圓內(nèi)切.故選:C【點(diǎn)睛】本題考查了圓與圓的位置關(guān)系,解答兩圓相切問(wèn)題時(shí)易忽略兩圓相切包括內(nèi)切和外切兩種情況.解答時(shí)注意分類討論,屬于基礎(chǔ)題.2、D【解析】根據(jù)題意可知,當(dāng)時(shí),,即函數(shù)在上單調(diào)遞增,再結(jié)合函數(shù)f(x)的奇偶性得到函數(shù)的奇偶性,并根據(jù)奇偶性得到單調(diào)性,進(jìn)而解得答案.【詳解】由題意,當(dāng)時(shí),,則函數(shù)在上單調(diào)遞增,而f(x)是定義在R上的偶函數(shù),容易判斷是定義在上的奇函數(shù),于是在上單調(diào)遞增,而f(-1)=0,則.于是當(dāng)時(shí),.故選:D.3、A【解析】求得組距,由此確定正確選項(xiàng).【詳解】,即組距為,A選項(xiàng)符合,其它選項(xiàng)不符合.故選:A4、B【解析】以雙曲線的對(duì)稱中心為原點(diǎn),焦點(diǎn)所在對(duì)稱軸為y軸建立直角坐標(biāo)系,求出雙曲線方程,數(shù)形結(jié)合即可求解.【詳解】如圖所示,以雙曲線的對(duì)稱中心為原點(diǎn),焦點(diǎn)所在對(duì)稱軸為y軸建立直角坐標(biāo)系,設(shè)雙曲線標(biāo)準(zhǔn)方程為:(a>0),則頂點(diǎn),,將A點(diǎn)代入雙曲線方程得,,當(dāng)水面下降6米后,,代入雙曲線方程得,,∴水面寬:米.故選:B.5、D【解析】設(shè)橢圓長(zhǎng)半軸長(zhǎng)為a1,雙曲線的半實(shí)軸長(zhǎng)a2,焦距2c.根據(jù)橢圓及雙曲線的定義可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根據(jù)余弦定理可得到,利用基本不等式可得結(jié)論【詳解】如圖,設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為a1,雙曲線的半實(shí)軸長(zhǎng)為a2,則根據(jù)橢圓及雙曲線的定義:|PF1|+|PF2|=2a1,|PF1|﹣|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1﹣a2,設(shè)|F1F2|=2c,∠F1PF2=,則:在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1﹣a2)2﹣2(a1+a2)(a1﹣a2)cos∴化簡(jiǎn)得:a12+3a22=4c2,該式可變成:,∴≥2∴,故選D【點(diǎn)睛】本題考查圓錐曲線的共同特征,考查通過(guò)橢圓與雙曲線的定義求焦點(diǎn)三角形三邊長(zhǎng),考查利用基本不等式求最值問(wèn)題,屬于中檔題6、D【解析】利用分布計(jì)數(shù)原理求出所有的基本事件個(gè)數(shù),在求出點(diǎn)落在直線x+y=4上包含的基本事件個(gè)數(shù),利用古典概型的概率個(gè)數(shù)求出.解:連續(xù)拋擲兩次骰子出現(xiàn)的結(jié)果共有6×6=36,其中每個(gè)結(jié)果出現(xiàn)的機(jī)會(huì)都是等可能的,點(diǎn)P(m,n)在直線x+y=4上包含的結(jié)果有(1,3),(2,2),(3,1)共三個(gè),所以點(diǎn)P(m,n)在直線x+y=4上的概率是3:36=1:12,故選D考點(diǎn):古典概型點(diǎn)評(píng):本題考查先判斷出各個(gè)結(jié)果是等可能事件,再利用古典概型的概率公式求概率,屬于基礎(chǔ)題7、A【解析】由拋物線的性質(zhì):過(guò)焦點(diǎn)的弦長(zhǎng)公式計(jì)算可得.【詳解】設(shè)直線,的斜率分別為,由拋物線的性質(zhì)可得,,所以,又因?yàn)?,所以,所以,故選:A.8、B【解析】可將原命題變成全稱命題形式,而全稱命題的否定為特稱命題,即可選出答案.【詳解】命題“對(duì)任何實(shí)數(shù),都有”,可寫成:,使得,此命題為全稱命題,故其否定形式為:,使得.故選:B.9、D【解析】為中點(diǎn),連接,易得為平行四邊形,進(jìn)而可知B到平面PCD的距離即為到平面PCD的距離,再由線面垂直的性質(zhì)確定線線垂直,在直角三角形中應(yīng)用勾股定理求相關(guān)線段長(zhǎng),即可得△為直角三角形,最后應(yīng)用等體積法求點(diǎn)面距即可.【詳解】若為中點(diǎn),連接,又E為PA的中點(diǎn),所以,,又,,則且,所以為平行四邊形,即,又面,面,所以面,故B到平面PCD的距離,即為到平面PCD的距離,由底面ABCD,面ABCD,即,,,又,即,,則面,面,即,而,,,,易知:,在△中;在△中;在△中;綜上,,故,又,則.所以B到平面PCD的距離為.故選:D10、A【解析】根據(jù)離心率及a,b,c的關(guān)系,可求得,代入即可得答案.【詳解】因?yàn)殡x心率,所以,所以,,則,所以C的漸近線方程為.故選:A11、D【解析】根據(jù)平行六面體的幾何特點(diǎn),結(jié)合空間向量的線性運(yùn)算,即可求得結(jié)果.【詳解】因?yàn)槠叫辛骟w中,點(diǎn)M在上,且故可得故選:D.12、D【解析】利用互斥事件、對(duì)立事件的定義逐一判斷即可.【詳解】A答案中的兩個(gè)事件可以同時(shí)發(fā)生,不是互斥事件B答案中的兩個(gè)事件可以同時(shí)發(fā)生,不是互斥事件C答案中的兩個(gè)事件不能同時(shí)發(fā)生,但必有一個(gè)發(fā)生,既是互斥事件又是對(duì)立事件D答案中的兩個(gè)事件不能同時(shí)發(fā)生,也可以都不發(fā)生,故是互斥而不對(duì)立事件故選:D【點(diǎn)睛】本題考查的是互斥事件和對(duì)立事件的概念,較簡(jiǎn)單.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先證明則四邊形OMPN是平行四邊形,進(jìn)而根據(jù)橢圓定義求出a,再求出c,最后求出答案.【詳解】因?yàn)镸,O,N分別為的中點(diǎn),所以,則四邊形OMPN是平行四邊形,所以,由四邊形OMPN的周長(zhǎng)為4可知,,即,則,于是的周長(zhǎng)是.故答案為:.14、##【解析】設(shè)直線與平面所成角為,則,直接利用直線與平面所成的角的向量計(jì)算公式,即可求出直線與平面所成的角【詳解】解:已知直線的方向向量為,平面的法向量為,設(shè)直線與平面所成角為,則,,,所以直線與平面所成角為.故答案為:.15、##0.5【解析】導(dǎo)數(shù)的定義公式的變形應(yīng)用,要求分子分母的變化量相同.【詳解】故答案為:.16、【解析】分析得都在以為焦點(diǎn)的橢球上,再利用橢球的性質(zhì)得到,化簡(jiǎn)即得解.【詳解】解:因?yàn)椋远荚谝詾榻裹c(diǎn)橢球上,由橢球的性質(zhì)得,是垂直橢球焦點(diǎn)所在直線的弦,的最大值為,此時(shí)共面且過(guò)中點(diǎn),即故實(shí)數(shù)的取值范圍為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)先求出直線過(guò)的定點(diǎn),再根據(jù)弦長(zhǎng)|AB|最短時(shí),求解.(2)用直譯法求解【小問(wèn)1詳解】直線即,所以直線過(guò)定點(diǎn).當(dāng)弦長(zhǎng)|AB|最短時(shí),因?yàn)橹本€PC的斜率所以此時(shí)直線的斜率所以當(dāng)弦長(zhǎng)|AB|最短時(shí),求直線的方程為,即【小問(wèn)2詳解】設(shè),易知圓心D在軸上方,圓D半徑為因?yàn)閳A與圓外切,所以即整理得點(diǎn)的軌跡方程為18、(1);(2)存在,直線方程為或.【解析】(1)利用待定系數(shù)法即求;(2)利用直線與圓的位置關(guān)系可得,然后利用菱形的性質(zhì)可得圓心到直線的距離,即得.【小問(wèn)1詳解】曲線與軸的交點(diǎn)為,與軸的交點(diǎn)為,,設(shè)圓的方程為,則,解得.∴圓的方程為;【小問(wèn)2詳解】∵圓與直線交于,兩點(diǎn),圓化為,圓心坐標(biāo)為,半徑為.∴圓心到直線的距離,解得.假設(shè)存在點(diǎn),使得四邊形為菱形,則與互相平分,∴圓心到直線的距離,即,解得,經(jīng)驗(yàn)證滿足條件.∴存在點(diǎn),使得四邊形為菱形,此時(shí)的直線方程為或.19、(1)(2)【解析】(1)由正弦定理得,再由范圍可得答案;(2)由余弦定理和基本不等式可得,再由面積公式可得答案.【小問(wèn)1詳解】∵,由正弦定理得,又,所以,又,則;【小問(wèn)2詳解】由余弦定理得,即,所以,當(dāng)且僅當(dāng),取“=”,所以面積的最大值為20、(1);(2)會(huì)駛?cè)氚踩A(yù)警區(qū),行駛時(shí)長(zhǎng)為半小時(shí)【解析】(1)先求出A,B的坐標(biāo),再由距離公式得出A,B之間的距離;(2)由三點(diǎn)的坐標(biāo)列出方程組得出經(jīng)過(guò)三點(diǎn)的圓的方程,設(shè)輪船航線所在的直線為,再由幾何法得出直線與圓截得的弦長(zhǎng),進(jìn)而得出安全警示區(qū)內(nèi)行駛時(shí)長(zhǎng).【小問(wèn)1詳解】由題意得,∴;【小問(wèn)2詳解】設(shè)圓的方程為,因?yàn)樵搱A經(jīng)過(guò)三點(diǎn),∴,得到.所以該圓方程為:,化成標(biāo)準(zhǔn)方程為:.設(shè)輪船航線所在的直線為,則直線的方程為:,圓心(6,8)到直線的距離,所以直線與圓相交,即輪船會(huì)駛?cè)氚踩A(yù)警區(qū).直線與圓截得的弦長(zhǎng)為,行駛時(shí)長(zhǎng)小時(shí).即在安全警示區(qū)內(nèi)行駛時(shí)長(zhǎng)為半小時(shí).21、(1);(2).【解析】(1)由已知條件可得出關(guān)于、、的方程組,求出這三個(gè)量的值,由此可得出橢圓的標(biāo)準(zhǔn)方程;(2)分析可知直線的斜率存在且不為零,設(shè)直線的方程為,由點(diǎn)到直線的距離公式可得出,設(shè)點(diǎn)、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由可得出,代入韋達(dá)定理求出、的值,由此可得出直線的方程.【詳解】(1)設(shè)橢圓的焦距為,則,解得,因此,橢圓的標(biāo)準(zhǔn)方程為;(2)若直線斜率不存在,則直線過(guò)原點(diǎn),不合乎題意.所以,直線的斜率存在,設(shè)斜率為,設(shè)直線方程為,設(shè)、,原點(diǎn)到直線的距離為,,即①.聯(lián)立直線與橢圓方程可得,則,則,由韋達(dá)定理可得,.,則為線段的中點(diǎn),所以,,,得,,所以,,整理可得,解得,即,,因此,直線的方程為或.【點(diǎn)睛】方法點(diǎn)睛:利用韋達(dá)定理法解決直線與圓錐曲線相交問(wèn)題的基本步驟如下:(1)設(shè)直線方程,設(shè)交點(diǎn)坐標(biāo)為、;(2)聯(lián)立直線與圓錐曲線的方程,得到關(guān)于(或)的一元二次方程,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年茶葉店租賃合同范本6篇
- 2025年度網(wǎng)絡(luò)安全防護(hù)軟件設(shè)計(jì)與實(shí)施合同3篇
- 2024鐵路房屋買賣合同1
- 2024年精制木門安裝承包合同
- 2025年度教育設(shè)施建筑工程合同終止及后續(xù)教學(xué)管理協(xié)議3篇
- 寵物訓(xùn)練行業(yè)發(fā)展趨勢(shì)分析報(bào)告
- 2024萬(wàn)能房屋租賃合同包含租客信用記錄更新服務(wù)3篇
- 2024年股權(quán)轉(zhuǎn)讓合同:股份交易與變更
- 2025年度精裝修商品房認(rèn)購(gòu)協(xié)議書(shū)模板
- 2024年酒店式公寓代理出租及維護(hù)合同3篇
- 2023年遼寧省交通高等??茖W(xué)校高職單招(英語(yǔ))試題庫(kù)含答案解析
- GB/T 36127-2018玉雕制品工藝質(zhì)量評(píng)價(jià)
- GB/T 304.3-2002關(guān)節(jié)軸承配合
- GB/T 23445-2009聚合物水泥防水涂料
- 漆畫(huà)漆藝 第三章
- CB/T 615-1995船底吸入格柵
- (完整版)100道湊十法練習(xí)題
- 光伏逆變器一課件
- 2023年上海師范大學(xué)輔導(dǎo)員招聘考試筆試題庫(kù)及答案解析
- 嚴(yán)重精神障礙患者發(fā)病報(bào)告卡
- 《基礎(chǔ)馬來(lái)語(yǔ)》課程標(biāo)準(zhǔn)(高職)
評(píng)論
0/150
提交評(píng)論