版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆上海市寶山區(qū)吳淞中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,滿足,則的最小值為()A.5 B.-3C.-5 D.-92.命題:,否定是()A., B.,C., D.,3.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》記有行程減等問題:三百七十八里關(guān),初行健步不為難次日腳痛減一半,六朝才得到其關(guān).要見每朝行里數(shù),請公仔細(xì)算相還.意為:某人步行到378里的要塞去,第一天走路強(qiáng)壯有力,但把腳走痛了,次日因腳痛減少了一半,他所走的路程比第一天減少了一半,以后幾天走的路程都比前一天減少一半,走了六天才到達(dá)目的地.請仔細(xì)計算他每天各走多少路程?在這個問題中,第四天所走的路程為()A.96 B.48C.24 D.124.在長方體中,,,分別是棱,的中點(diǎn),則異面直線,的夾角為()A. B.C. D.5.拋物線上點(diǎn)的橫坐標(biāo)為4,則到拋物線焦點(diǎn)的距離等于()A.12 B.10C.8 D.66.若存在過點(diǎn)(0,-2)的直線與曲線和曲線都相切,則實(shí)數(shù)a的值是()A.2 B.1C.0 D.-27.已知橢圓:的左、右焦點(diǎn)分別為、,為坐標(biāo)原點(diǎn),為橢圓上一點(diǎn).與軸交于一點(diǎn),,則橢圓C的離心率為()A. B.C. D.8.設(shè)函數(shù)在上可導(dǎo),則等于()A. B.C. D.以上都不對9.在下列各圖中,每個圖的兩個變量具有相關(guān)關(guān)系的圖是()A.(1)(2) B.(1)(3)C.(2) D.(2)(3)10.直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.相交或相切11.已知F是拋物線x2=y(tǒng)的焦點(diǎn),A、B是該拋物線上的兩點(diǎn),|AF|+|BF|=3,則線段AB的中點(diǎn)到x軸的距離為()A. B.C.1 D.12.一輛汽車做直線運(yùn)動,位移與時間的關(guān)系為,若汽車在時的瞬時速度為12,則()A. B.C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.如圖,某河流上有一座拋物線形的拱橋,已知橋的跨度米,高度米(即橋拱頂?shù)交诘闹本€的距離).由于河流上游降雨,導(dǎo)致河水從橋的基座處開始上漲了1米,則此時橋洞中水面的寬度為______米14.已知雙曲線的一條漸近線被圓所截得的弦長為2,則雙曲線的離心率為___________.15.傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家用沙粒和小石子來研究數(shù).他們根據(jù)沙?;蛐∈铀帕械男螤畎褦?shù)分成許多類,下圖中第一行的稱為三角形數(shù),第二行的稱為五邊形數(shù),則三角形數(shù)的第10項(xiàng)為__________,五邊形數(shù)的第項(xiàng)為__________.16.已知焦點(diǎn)在軸上的雙曲線,其漸近線方程為,焦距為,則該雙曲線的標(biāo)準(zhǔn)方程為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)冬奧會的全稱是冬季奧林匹克運(yùn)動會,是世界規(guī)模最大的冬季綜合性運(yùn)動會,每四年舉辦一屆.第24屆冬奧會將于2022年在中國北京和張家口舉行.為了弘揚(yáng)奧林匹克精神,增強(qiáng)學(xué)生的冬奧會知識,廣安市某中學(xué)校從全校隨機(jī)抽取50名學(xué)生參加冬奧會知識競賽,并根據(jù)這50名學(xué)生的競賽成績,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間(1)求頻率分布直方圖中a的值:(2)求這50名學(xué)生競賽成績的眾數(shù)和中位數(shù).(結(jié)果保留一位小數(shù))18.(12分)2017年廈門金磚會晤期間產(chǎn)生碳排放3095噸.2018年起廈門市政府在下潭尾濕地生態(tài)公園通過種植紅樹林的方式中和會晤期間產(chǎn)生的碳排放,擬用20年時間將碳排放全部吸收,實(shí)現(xiàn)“零碳排放”目標(biāo),向世界傳遞低碳,環(huán)保辦會的積極信號,踐行金磚國家倡導(dǎo)的可持續(xù)發(fā)展精神據(jù)研究估算,紅樹林的年碳吸收量隨著林齡每年遞增2%,2018年公園已有的紅樹林年碳吸收量為130噸,如果從2019年起每年新種植紅樹林若干畝,新種植的紅樹林當(dāng)年的年碳吸收量為m()噸.2018年起,紅樹林的年碳吸收量依次記,,,…(1)①寫出一個遞推公式,表示與之間的關(guān)系;②證明:是等比數(shù)列,并求的通項(xiàng)公式;(2)為了提前5年實(shí)現(xiàn)廈門會晤“零碳排放”的目標(biāo),m的最小值為多少?參考數(shù)據(jù):,,19.(12分)如圖,已知三棱柱的側(cè)棱與底面垂直,,,和分別是和的中點(diǎn),點(diǎn)在直線上,且.(1)證明:無論取何值,總有;(2)是否存在點(diǎn),使得平面與平面所成角為?若存在,試確定點(diǎn)的位置;若不存在,請說明理由.20.(12分)芯片作為在集成電路上的載體,廣泛應(yīng)用在手機(jī)、軍工、航天等多個領(lǐng)域,是能夠影響一個國家現(xiàn)代工業(yè)的重要因素.根據(jù)市場調(diào)研與統(tǒng)計,某公司七年時間里在芯片技術(shù)上的研發(fā)投入x(億元)與收益y(億元)的數(shù)據(jù)統(tǒng)計如下:(1)根據(jù)折線圖數(shù)據(jù),求y關(guān)于x的線性回歸方程(系數(shù)精確到整數(shù)部分);(2)為鼓勵科技創(chuàng)新,當(dāng)研發(fā)技術(shù)投入不少于16億元時,國家給予公司補(bǔ)貼5億元,預(yù)測當(dāng)芯片的研發(fā)投入為17億元時公司的實(shí)際收益附:其回歸方程的斜率和截距的最小二乘法估計分別為,.參考數(shù)據(jù),21.(12分)已知等差數(shù)列的前三項(xiàng)依次為,4,,前項(xiàng)和為,且.(1)求的通項(xiàng)公式及的值;(2)設(shè)數(shù)列的通項(xiàng),求證是等比數(shù)列,并求的前項(xiàng)和.22.(10分)如圖所示,在直三棱柱中,是等腰直角三角形,(1)證明:;(2)若點(diǎn)E是棱的中點(diǎn),求平面與平面所成銳二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】作出可行域,作出目標(biāo)函數(shù)對應(yīng)的直線,平移該直線可得最優(yōu)解【詳解】解:作出可行域,如圖內(nèi)部(含邊界),作直線,在中,,當(dāng)直線向下平移時,增大,因此把直線向上平移,當(dāng)直線過點(diǎn)時,故選:D2、D【解析】根據(jù)給定條件利用全稱量詞命題的否定是存在量詞命題直接寫出作答.【詳解】命題:,是全稱量詞命題,其否定是存在量詞命題,所以命題:,的否定是:,.故選:D3、C【解析】每天所走的里程構(gòu)成公比為的等比數(shù)列,設(shè)第一天走了里,利用等比數(shù)列基本量代換,直接求解.【詳解】由題意可知:每天所走的里程構(gòu)成公比為的等比數(shù)列.第一天走了里,第4天走了.故選:C4、C【解析】設(shè)出長度,建立空間直角坐標(biāo)系,根據(jù)向量求異面直線所成角即可.【詳解】如下圖所示,以,,所在直線方向,,軸,建立空間直角坐標(biāo)系,設(shè),,,,,,所以,,設(shè)異面直線,的夾角為,所以,所以,即異面直線,的夾角為.故選:C.5、C【解析】根據(jù)焦半徑公式即可求出【詳解】因?yàn)?,所以,所以故選:C6、A【解析】在兩曲線上設(shè)切點(diǎn),得到切線,又因?yàn)椋?,-2)在兩條切線上,列方程即可.【詳解】的導(dǎo)函數(shù)為,的導(dǎo)函數(shù)為,若直線與和的切點(diǎn)分別為(,),,∴過(0,-2)的直線為、,則有,可得故選:A.7、C【解析】由橢圓的性質(zhì)可先求得,故可得,再由橢圓的定義得a,c的關(guān)系,故可得答案【詳解】,,又,,則,,則,,由橢圓的定義得,,,故選:C8、C【解析】根據(jù)目標(biāo)式,結(jié)合導(dǎo)數(shù)的定義即可得結(jié)果.【詳解】.故選:C9、D【解析】根據(jù)圖形可得(1)具有函數(shù)關(guān)系;(2)(3)的散點(diǎn)分布在一條直線或曲線附近,具有相關(guān)關(guān)系;(4)的散點(diǎn)雜亂無章,不具有相關(guān)關(guān)系.【詳解】對(1),所有的點(diǎn)都在曲線上,故具有函數(shù)關(guān)系;對(2),所有的散點(diǎn)分布在一條直線附近,具有相關(guān)關(guān)系;對(3),所有的散點(diǎn)分布在一條曲線附近,具有相關(guān)關(guān)系;對(4),所有的散點(diǎn)雜亂無章,不具有相關(guān)關(guān)系.故選:D.10、A【解析】由直線恒過定點(diǎn),且定點(diǎn)圓內(nèi),從而即可判斷直線與圓相交.【詳解】解:因?yàn)橹本€恒過定點(diǎn),而,所以定點(diǎn)在圓內(nèi),所以直線與圓相交,故選:A.11、B【解析】根據(jù)拋物線的方程求出準(zhǔn)線方程,利用拋物線的定義拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,列出方程求出,的中點(diǎn)縱坐標(biāo),求出線段的中點(diǎn)到軸的距離【詳解】解:拋物線的焦點(diǎn)準(zhǔn)線方程,設(shè),,,解得,線段的中點(diǎn)縱坐標(biāo)為,線段的中點(diǎn)到軸的距離為,故選:B【點(diǎn)睛】本題考查解決拋物線上的點(diǎn)到焦點(diǎn)的距離問題,利用拋物線的定義將到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,屬于基礎(chǔ)題12、D【解析】首先求出函數(shù)的導(dǎo)函數(shù),依題意可得,即可解得;【詳解】解:因?yàn)?,所以又汽車在時的瞬時速度為12,即即,解得故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)在物理中的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以橋的頂點(diǎn)為坐標(biāo)原點(diǎn),水平方向所在直線為x軸建立直角坐標(biāo)系,則根據(jù)點(diǎn)在拋物線上,可得拋物線的方程,設(shè)水面與橋的交點(diǎn)坐標(biāo)為,求出,進(jìn)而可得水面的寬度.【詳解】以橋的頂點(diǎn)為坐標(biāo)原點(diǎn),水平方向所在直線為x軸建立直角坐標(biāo)系,則拋物線的方程為,因?yàn)辄c(diǎn)在拋物線上,所以,即故拋物線的方程為,設(shè)河水上漲1米后,水面與橋的交點(diǎn)坐標(biāo)為,則,得,所以此時橋洞中水面的寬度為米故答案為:14、或2【解析】由圓的方程有圓心,半徑為,討論雙曲線的焦點(diǎn)分別在x或y軸上對應(yīng)的漸近線方程,根據(jù)已知及弦長與半徑、弦心距的幾何關(guān)系得到雙曲線參數(shù)的齊次方程,即可求離心率.【詳解】由題設(shè),圓的標(biāo)準(zhǔn)方程為,即圓心,半徑為,若雙曲線為時,漸近線為且,所以圓心到雙曲線漸近線的距離為,由弦長、弦心距、半徑的關(guān)系知:,故,得:,又,所以,故.若雙曲線為時,漸近線為且,所以圓心到雙曲線漸近線的距離為,由弦長、弦心距、半徑的關(guān)系知:,故,得:,又,所以,故.綜上,雙曲線的離心率為或2.故答案為:或2.15、①.②.【解析】對于三角形數(shù),根據(jù)圖形尋找前后之間的關(guān)系,從而歸納出規(guī)律利用求和公式即得,對于五邊形數(shù)根據(jù)圖形尋找前后之間的關(guān)系,然后利用累加法可得通項(xiàng)公式.【詳解】由題可知三角形數(shù)的第1項(xiàng)為1,第2項(xiàng)為3=1+2,第3項(xiàng)為6=1+2+3,第4項(xiàng)為10=1+2+3+4,,因此,第10項(xiàng)為;五邊形數(shù)的第1項(xiàng)為,第2項(xiàng)為,第3項(xiàng)為,第4項(xiàng)為,…,因此,,所以當(dāng)時,,當(dāng)時也適合,故,即五邊形數(shù)的第項(xiàng)為.故答案為:55;.16、【解析】根據(jù)漸近線方程、焦距可得,,再根據(jù)雙曲線參數(shù)關(guān)系、焦點(diǎn)的位置寫出雙曲線標(biāo)準(zhǔn)方程.詳解】由題設(shè),可知:,,∴由,可得,,又焦點(diǎn)在軸上,∴雙曲線的標(biāo)準(zhǔn)方程為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)眾數(shù);中位數(shù)【解析】(1)根據(jù)頻率分布直方圖矩形面積和為1列式即可;(2)根據(jù)眾數(shù)即最高矩形中間值,中位數(shù)左右兩邊矩形面積各為0.5列式即可.【小問1詳解】由,得【小問2詳解】50名學(xué)生競賽成績的眾數(shù)為設(shè)中位數(shù)為,則解得所以這50名學(xué)生競賽成績的中位數(shù)為76.418、(1)①;②證明見解析,(2)最少為6.56噸【解析】(1)①根據(jù)題意直接寫出一個遞推公式即可;②要證明是等比數(shù)列,只要證明為一個常數(shù)即可,求出等比數(shù)列的通項(xiàng)公式,即可求出的通項(xiàng)公式;(2)記為數(shù)列的前n項(xiàng)和,根據(jù)題意求出,利用分組求和法求出數(shù)列的前n項(xiàng)和,再令,解之即可得出答案.【小問1詳解】解:①依題意得,則,②因?yàn)?,所以,所以,因?yàn)樗詳?shù)列是等比數(shù)列,首項(xiàng)是,公比是1.02,所以,所以;【小問2詳解】解:記為數(shù)列的前n項(xiàng)和,,依題,所以,所以m最少為6.56噸19、(1)證明見解析;(2)不存在,理由見解析.【解析】(1)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,計算得出,即可得出結(jié)論;(2)計算出平面的一個法向量,利用空間向量法可得出關(guān)于的方程,即可得出結(jié)論.【詳解】(1)因?yàn)槠矫?,,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,則、、、,,,所以,,則,因此,無論取何值,總有;(2),設(shè)平面的法向量為,則,取,則,,所以,平面的一個法向量為,易知平面的一個法向量為,由題意可得,整理可得,,此方程無解,因此,不存在點(diǎn),使得平面與平面所成的角為.20、(1)(2)85億元【解析】(1)利用公式和數(shù)據(jù)計算即可(2)代入回歸直線計算即可小問1詳解】由折線圖中數(shù)據(jù)知,,,因?yàn)?所以所以y關(guān)于x的線性回歸方程為【小問2詳解】當(dāng)時,億元,此時公司的實(shí)際收益的預(yù)測值為億元21、(1),(2)證明見解析,【解析】(1)直接利用等差中項(xiàng)的應(yīng)用求出的值,進(jìn)一步求出數(shù)列的通項(xiàng)公式和的值;(2)利用等比數(shù)列的定義即可證明數(shù)列為等比數(shù)列,進(jìn)一步求出數(shù)列的和.【小問1詳解】等差數(shù)列的前三項(xiàng)依次為,4,,∴,解得;故首項(xiàng)為2,公差為2,故,前項(xiàng)和為,且,整理得,解得或-11(負(fù)值舍去).∴,k=10.【小問2詳解】由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 住宅綠化養(yǎng)護(hù)合同
- 《榜樣9》觀后感:新時代共產(chǎn)黨人的精神力量
- 電影評論中背景設(shè)定的藝術(shù)分析
- 2024高中地理第2章區(qū)域可持續(xù)發(fā)展第6節(jié)區(qū)域工業(yè)化與城市化進(jìn)程-以珠江三角洲為例精練含解析湘教版必修3
- 2024高中物理第三章相互作用2彈力課后作業(yè)含解析新人教版必修1
- 2024高中語文第6單元墨子蚜第3課尚賢練習(xí)含解析新人教版選修先秦諸子蚜
- 2024高中語文第六課語言的藝術(shù)第4節(jié)入鄉(xiāng)問俗-語言和文化練習(xí)含解析新人教版選修語言文字應(yīng)用
- 2024高考化學(xué)一輪復(fù)習(xí)課練22化學(xué)反應(yīng)的方向與限度含解析
- 校長在新學(xué)期第一次年級組長會議上講話
- 小學(xué)一年級綜合與實(shí)踐教學(xué)計劃
- 水工-建筑物課件
- 裝修增減項(xiàng)單模板
- 義務(wù)教育英語課程標(biāo)準(zhǔn)2022年版新增詞匯記背
- 人教版高中物理必修二全冊同步課時練習(xí)
- 張克非《公共關(guān)系學(xué)》(修訂版)筆記和課后習(xí)題詳解
- 30多個環(huán)衛(wèi)PPP項(xiàng)目先后退庫涉及多家上市公司
- 世界技能大賽選拔賽3D數(shù)字游戲藝術(shù)項(xiàng)目技術(shù)文件
- 榮譽(yù)證書打印模板word格式
- 營養(yǎng)學(xué)與健康
- 湖北高校畢業(yè)生就業(yè)協(xié)議書填寫格式說明樣表
- 單位工會組織活動方案(9篇)
評論
0/150
提交評論