




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Data
Poisoning:
Attacks
and
Defenses姜育剛,馬興軍,吳祖煊Recap:
week
5
1.
Adversarial
DefenseEarly
Defense
MethodsEarly
Adversarial
Training
MethodsAdvanced
Adversarial
Training
MethodsRemaining
Challenges
and
Recent
ProgressAdversarial
Attack
CompetitionLink:https://codalab.lisn.upsaclay.fr/competitions/15669?secret_key=77cb8986-d5bd-4009-82f0-7dde2e819ff8
Data
Poisoning:
Attacks
and
DefensesA
Brief
History
of
Data
PoisoningData
Poisoning
AttacksData
Poisoning
DefensesPoisoning
for
Data
ProtectionFuture
ResearchA
Recap
of
the
Attack
TaxonomyAttacktimingPoisoningattackEvasionattackAttacker’sgoalTargetedattackUntargetedattackAttacker’sknowledgeBlack-boxWhite-boxGray-boxUniversalityIndividualUniversalData
Poisoning
is
Training
Time
AttackEvasion(Causation)attackTesttimeattackChangeinputexamplePoisoningattackTrainingtimeattackChangeclassificationboundaryData
Poisoning:
Attacks
and
DefensesA
Brief
History
of
Data
PoisoningData
Poisoning
AttacksData
Poisoning
DefensesPoisoning
for
Data
ProtectionFuture
ResearchA
Brief
History:
The
Eearliest
WorkKearns
and
Li.
“Learninginthepresenceofmaliciouserrors”,
SIAM
Journal
on
Computing,
1993Poisoning
IntrusionDetectionSystemBarreno,Marco,etal.“Canmachinelearningbesecure?.”
ASIACCS,
2006.TheattackmodelPoisoning
IntrusionDetectionSystemBarreno,Marco,etal.“Canmachinelearningbesecure?.”
ASIACCS,
2006.ThedefensemodelSubvertYourSpamFilterNelson,Blaine,etal."Exploitingmachinelearningtosubvertyourspamfilter."
LEET
8.1(2008):9.Usenet
dictionary
attack:
Add
legitimate
words
into
spam
emails1%poisoning
can
subvert
a
spam
filterThe
Concept
of
Poisoning
AttackBiggio,Nelson
andLaskov."Poisoningattacksagainstsupportvectormachines."arXiv:1206.6389
(2012).asingleattackdatapointcausedtheclassificationerrortorisefromtheinitialerrorratesof2–5%to15–20%Data
Poisoning:
Attacks
and
DefensesA
Brief
History
of
Data
PoisoningData
Poisoning
AttacksData
Poisoning
DefensesPoisoning
for
Data
ProtectionFuture
ResearchAttack
Pipeline模型訓(xùn)練污染少量訓(xùn)練樣本(越少越好)無效模型、被控制模型投毒攻擊!=后門攻擊后門攻擊的一種實(shí)現(xiàn)方式是通過數(shù)據(jù)投毒Attack
PipelineLiu,Ximeng,etal."Privacyandsecurityissuesindeeplearning:Asurvey."
IEEEAccess
9(2020):4566-4593.Attack
TypesCore
idea:
how
to
influence
the
training
processLabel
PoisoningIncorrect
labels
break
supervised
Learning!Random
LabelsLabel
FlippingPartial
Label
FlippingSelf-supervised
learning?Biggio,Nelson
andLaskov."Poisoningattacksagainstsupportvectormachines."arXiv:1206.6389
(2012).Zhang
andZhu."Agame-theoreticanalysisoflabelflippingattacksondistributedsupportvectormachines."
CISS,2017.Label
Flipping
Attack(“指鹿為馬”攻擊)p-tamperingattacksMahloujifarandMahmoody.“Blockwisep-tamperingattacksoncryptographicprimitives,extractors,andlearners.”
TCC,
2017.Mahloujifar,
Mahmoodyand
Mohammed."Universalmulti-partypoisoningattacks."
ICML,2019.投毒?Pr=0.8在線更新模型‘dog’‘dog’induces
bias
shift篡改攻擊(“暗度陳倉(cāng)”攻擊)Feature
Space
PoisoningShafahi,Ali,etal.“Poisonfrogs!targetedclean-labelpoisoningattacksonneuralnetworks.”
NeurIPS
2018.Feature
Collision
Attack(“聲東擊西”攻擊)A
white-box
data
poisoning
methodFeature
flipping,
does
not
change
labels看上去是’狗’,但是在特征空間是’魚’優(yōu)缺點(diǎn):需要知道目標(biāo)模型對(duì)遷移學(xué)習(xí)很強(qiáng)對(duì)從頭訓(xùn)練并不強(qiáng)ConvexPolytopeAttackZhu,Chen,etal.“Transferableclean-labelpoisoningattacksondeepneuralnets.”
ICML
2019.凸多面體攻擊(“四面楚歌”攻擊)Improve
the
transferability
to
different
DNNs尋找一組毒化樣本將目標(biāo)樣本包圍在一個(gè)凸包內(nèi)借助多個(gè)預(yù)訓(xùn)練模型來尋找“包圍”樣本:
m個(gè)預(yù)訓(xùn)練模型
權(quán)重約束ConvexPolytopeAttack
vs
Feature
Collision
AttackZhu,Chen,etal.“Transferableclean-labelpoisoningattacksondeepneuralnets.”
ICML
2019.基于SVM的示例藍(lán)色毛球:目標(biāo)樣本,不存在與訓(xùn)練集中紅色毛球:包圍樣本普通紅/藍(lán)點(diǎn):普通訓(xùn)練樣本Bi-level
Optimization
AttackMei
andZhu.“Usingmachineteachingtoidentifyoptimaltraining-setattacksonmachinelearners.”
AAAI
2015.投毒攻擊是一種“雙層優(yōu)化”:投毒完成后,訓(xùn)練模型才能知道其效果是一個(gè)最大-最小化(max-min)問題內(nèi)部最小化:在投毒數(shù)據(jù)上更新模型外部最大化:在更新后的模型上生成更強(qiáng)的投毒數(shù)據(jù)MetaPoisonHuang,W.Ronny,etal.“Metapoison:Practicalgeneral-purposeclean-labeldatapoisoning.”
NeurIPS
2020.One
advanced
bi-level
optimization
attack不修改類標(biāo)有目標(biāo)(Targeted攻擊)驗(yàn)證集上的性能不變使用元學(xué)習(xí)尋找高效投毒樣本可攻擊微調(diào)和端到端模型成功攻擊商業(yè)模型Google
Cloud
AutoML
APIMetaPoisonHuang,W.Ronny,etal.“Metapoison:Practicalgeneral-purposeclean-labeldatapoisoning.”
NeurIPS
2020.A
Bi-level
Min-Min
Optimization
AttackK-step優(yōu)化策略:內(nèi)層多步(’look
ahead’),外層一步使用m個(gè)模型和周期性初始化來增加探索MetaPoisonHuang,W.Ronny,etal.“Metapoison:Practicalgeneral-purposeclean-labeldatapoisoning.”
NeurIPS
2020.優(yōu)化階段投毒后影響MetaPoisonHuang,W.Ronny,etal.“Metapoison:Practicalgeneral-purposeclean-labeldatapoisoning.”
NeurIPS
2020.毒化0.1%的數(shù)據(jù)即可達(dá)到很高的ASR示例:狗毒化成鳥Witches‘Brew:思想Geiping,Jonas,etal.“Witches‘Brew:IndustrialScaleDataPoisoningviaGradientMatching.”
ICLR
2021.依然是Min-Min雙層優(yōu)化問題Trick:在生成毒化樣本時(shí),使其梯度與目標(biāo)樣本一致直觀理解:讓毒化樣本和目標(biāo)樣本在訓(xùn)練過程中觸發(fā)同樣的梯度,即讓毒化樣本更像目標(biāo)樣本W(wǎng)itches‘Brew:實(shí)驗(yàn)結(jié)果Geiping,Jonas,etal.“Witches‘Brew:IndustrialScaleDataPoisoningviaGradientMatching.”
ICLR
2021.Generative
Attack(生成式攻擊)/machine-learning/gan/gan_structure對(duì)抗生成網(wǎng)絡(luò)(GAN):一次訓(xùn)練,無限使用Autoencoder-based
Generative
AttackYang,Chaofei,etal."Generativepoisoningattackmethodagainstneuralnetworks."
arXiv:1703.01340
(2017).從正常的5開始,使用直接梯度從隨機(jī)噪聲開始,使用直接梯度從正產(chǎn)的5開始,使用生成方法pGAN涉及三個(gè)模型:
D(判別器)、G(生成器)、C(分類器)對(duì)抗損失與GAN一樣:分類損失(原始數(shù)據(jù)+生成數(shù)據(jù)損失):Yang,Chaofei,etal."Generativepoisoningattackmethodagainstneuralnetworks."
arXiv:1703.01340
(2017).pGAN綠色:正常類(目標(biāo)類),正常樣本藍(lán)色:正常類,正常樣本紅色:毒化類,毒化樣本可以生成真正靠近目標(biāo)類的投毒樣本Yang,Chaofei,etal."Generativepoisoningattackmethodagainstneuralnetworks."
arXiv:1703.01340
(2017).差異化攻擊:對(duì)哪些樣本投毒更有效?Kohet
al."Strongerdatapoisoningattacksbreakdatasanitizationdefenses."
MachineLearning
111.1(2022):1-47.衡量樣本影響力的指標(biāo):
對(duì)影響大的樣本投毒Data
Poisoning:
Attacks
and
DefensesA
Brief
History
of
Data
PoisoningData
Poisoning
AttacksData
Poisoning
DefensesPoisoning
for
Data
ProtectionFuture
ResearchData
Poisoning
DefenseShen,Yanyao,andSujaySanghavi.“Learningwithbadtrainingdataviaiterativetrimmedlossminimization.”
ICML
2019Robust
Learning
with
Trimmed
Loss
Loss低的是好樣本Loss高的是壞樣本讓模型盡量在Loss低的樣本上訓(xùn)練問題樣本:噪聲標(biāo)簽、系統(tǒng)噪聲、生成模型—+壞數(shù)據(jù)、后門樣本Data
Poisoning
DefenseRobust
Learning
with
Trimmed
Loss
是一個(gè)min-min問題內(nèi)部最小化:選擇低loss的樣本子集S外部最小化:在子集S上訓(xùn)練模型Shen,Yanyao,andSujaySanghavi.“Learningwithbadtrainingdataviaiterativetrimmedlossminimization.”
ICML
2019深度劃分聚合(DeepPartitionAggregation,DPA)Levine,Alexander,andSoheilFeizi.“Deeppartitionaggregation:Provabledefenseagainstgeneralpoisoningattacks.”
ICLR
2021分而治之:適用于投毒樣本比較少的情況將訓(xùn)練集劃分為k個(gè)均勻子集:在每個(gè)子集上訓(xùn)練一個(gè)基分類器:投票決策:反后門學(xué)習(xí)(Anti-Backdoor
Learning,
ABL)Li,Yige,etal.“Anti-backdoorlearning:Trainingcleanmodelsonpoisoneddata.”
NeurIPS
2021學(xué)的快的樣本不是好樣本Trainingloss
onCleansamples
(blue)VS.Poisonedexamples
(yellow)研究10種基于投毒的后門攻擊毒化樣本在訓(xùn)練初期就學(xué)完了毒化樣本的損失下降很快反后門學(xué)習(xí)(Anti-Backdoor
Learning,
ABL)先隔離再反學(xué)習(xí)ProblemFormulation
OverviewofABLLGA:
local
gradient
ascent;
GGA:
global
gradient
ascentLi,Yige,etal.“Anti-backdoorlearning:Trainingcleanmodelsonpoisoneddata.”
NeurIPS
2021Data
Poisoning:
Attacks
and
DefensesA
Brief
History
of
Data
PoisoningData
Poisoning
AttacksData
Poisoning
DefensesPoisoning
for
Data
ProtectionFuture
ResearchUnlearnable
Exampleshttps://exposing.ai/megaface/互聯(lián)網(wǎng)上充斥著大量的個(gè)人數(shù)據(jù)Personal
Data
Are
Used
For
Training
Commercial
ModelsDatasetcollectedfromtheInternet:Withoutawareness[1].Trainingcommercialmodels[2].Privacyconcerns[3].[1]Prabhu&Abeba,"Largeimagedatasets:Apyrrhicwinforcomputervision?."
arXiv:2006.16923,2020.[2]HillKashmir,“TheSecretiveCompanyThatMightEndPrivacyasWeKnowIt.”NYtimes,2020.[3]Shan,Shawn,etal."Fawkes:Protectingpersonalprivacyagainstunauthorizeddeeplearningmodels.”USENIXSecuritySymposium,2020Unlearnable
ExamplesGoal:making
data
unlearnable
(unusable)
to
machine
learningModify
TrainingImages->Make
them
UselessHuang,Hanxun,etal.“Unlearnableexamples:Makingpersonaldataunexploitable.”
ICLR
2021.Adversarial
noisesaresmall,imperceptibletohumaneyes.Szegedyetal.2013,Goodfellowetal.2014Adversarial
Noise
=
Error-maximizingNoiseAdversarialExamplesfoolDNNattesttimeby
maximizingerrors.Adversarial
noise
can
mislead
ML
modelsNO
Error
to
Learn?Huang,Hanxun,etal.“Unlearnableexamples:Makingpersonaldataunexploitable.”
ICLR
2021.GeneratingError-MinimizingNoise
想要影響模型的訓(xùn)練那一定是一個(gè)雙層優(yōu)化問題Huang,Hanxun,etal.“Unlearnableexamples:Makingpersonaldataunexploitable.”
ICLR
2021.Sample-wiseNoise+=每個(gè)樣本都有一套自己的噪聲Huang,Hanxun,etal.“Unlearnableexamples:Makingpersonaldataunexploitable.”
ICLR
2021.Class-wiseNoise+=每類樣本共享一套噪聲規(guī)律?為什么這一個(gè)噪聲圖案可以讓一整類的數(shù)據(jù)沒有了錯(cuò)誤?Huang,Hanxun,etal.“Unlearnableexamples:Makingpersonaldataunexploitable.”
ICLR
2021.Comparisontheeffectofdifferentnoisesontraining:Error-Minimizingnoisecancreateunlearnableexamplesinbothsettings.ExperimentsHuang,Hanxun,etal.“Unlearnableexamples:Makingpersonaldataunexploitable.”
ICLR
2021.Isthenoisetransferabletoothermodels?YesIsthenoisetransferabletootherdatasets?YesIsthenoiserobusttodataaugmentation?YesExperimentsWhatpercentageofthedataneedstobeunlearnable?Unfortunately,
it
needs
100%
training
data
to
be
poisoned.ExperimentsHow
about
protecting
part
of
the
data
or
just
one
class?UnlearnableExampleswillnotcontributetomodeltraining.ExperimentsProtecting
FaceImagesNomorefacialrecognitions?Ifeveryonepostunlearnableimages.Conclusion&LimitationsAnewexcitingresearchproblem.UnlearnableExamples.Error-minimizingnoise.Limitationstorepresentationallearning.Limitationstoadversarialtraining
(已被ICLR2022的一篇工作解決:
Robust
Unlearnable
Examples).
Related
works:Cherepanovaetal."LowKey:LeveragingAdversarialAttackstoProtectSocialMediaUsersfromFacialRecognition."
ICLR,2021.Fowletal.“AdversarialExamplesMakeStrongPoisons.”
NeurIPS
2021.Fowletal."Preventingunauthorizeduseofproprietarydata:Poisoningforsecuredatasetrelease."
arXiv:2103.02683Radiya-DixitandTramèr."DataPoisoningWon'tSaveYouFromFacialRecognition."
arXiv:2106.14851Shanetal.“Fawkes:Protectingprivacyagainstunauthorizeddeeplearningmodels.”
USENIX
Security,
2021Unlearnable
ClustersProtection
Against
Unknown
LabellingExisting
ApproachesError-minimizingnoise使模型的訓(xùn)練損失下降到0來讓模型覺得“已經(jīng)沒有什么信息可學(xué)了”[1]。AdversarialPoisoning利用非魯棒特征[2]這個(gè)概念使模型去學(xué)習(xí)錯(cuò)誤的非魯棒特征[3]。[1]Unlearnableexamples:Makingpersonaldataunexploitable,ICLR2021.[2]AdversarialExamplesAreNotBugs,TheyAreFeatures,NeurIPS2019.[3]Adversarialexamplesmakestrongpoisons,NeurIPS2021.UniversalAdversarialPerturbation
(UAP)[1]Universaladversarialperturbations,CVPR2017.[2]ImageNetPre-trainingAlsoTransfersNon-robustness,AAAI2023.UniversalAdversarialPerturbation(UAP)是指被施加在任一圖像上之后都弄愚弄模型的一種class-wise
perturbation[1]。它既可以“覆蓋”圖像中原本的語(yǔ)義特征,還可以“獨(dú)立”地工作[2]。Unlearnable
Clusters
(UCs)在不依賴標(biāo)簽信息(分類層)的前提下,實(shí)現(xiàn)打破一致性(uniformity)和差異性(discrepancy)K-means
Initial
DisruptingDiscrepancyandUniformity
MethodologyExperimentsExperimentsExperimentsDataset:37-classPetsDataset:37-classPetsTransferable
Unlearnable
ExamplesLinear
SeparabilityAvailabilityAttacksCreateShortcuts.
Yu,Daetal.,
KDD
2022.Class-wise
perturbationsEMNt-SNE
visualization
in
input
space(32
x
32
x
3)
dim
=
3072
dimreshapeLinear
SeparabilityQuantifying
Linear
SeparabilityAvailabilityAttacksCreateShortcuts.
Yu,Daetal.,
KDD
2022.Input
x:
perturbationLabel
y:
corresponding
label
of
perturbed
imageModel:
Linear
model
and
Two-layer
Neural
NetworkLinearly
Separable
PerturbationsAvailabilityAttacksCreateShortcuts.
Yu,Daetal.,
KDD
2022.Goal:
to
show
simple
linear
separability
is
enough
for
poisoning.Syntheticnoise
(SN):horsehorsecat
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- T-ZJCX 0045-2024 食用菌干制品
- T-ZGZS 0411-2024 T-CCPITCSC 150-2024 綠色會(huì)展廢棄物管理規(guī)范
- T-ZMDS 10024-2024 手術(shù)導(dǎo)航設(shè)備配準(zhǔn)技術(shù)要求及試驗(yàn)方法
- 2025年度高端辦公空間無償租賃合作協(xié)議
- 2025年度能源企業(yè)質(zhì)押貸款擔(dān)保合同
- 二零二五年度企業(yè)辦公用品定制化采購(gòu)合同
- 醫(yī)藥公司二零二五年度員工商業(yè)秘密保密協(xié)議及保密技術(shù)支持服務(wù)協(xié)議
- 2025年度村辦公室裝修與農(nóng)村電商市場(chǎng)拓展合作合同
- 二零二五年度酒店加盟店經(jīng)營(yíng)管理合作協(xié)議
- 2025年度物流園區(qū)開發(fā)物業(yè)移交與倉(cāng)儲(chǔ)物流服務(wù)協(xié)議
- 綠色化學(xué)原理課件
- 《數(shù)獨(dú)》(第一課)教學(xué)課件
- 新教科版三年級(jí)下冊(cè)科學(xué)全冊(cè)教案(2022年1月修訂)
- 便與健康課件
- 自然辯證法概論課件:第二章馬克思主義科學(xué)技術(shù)觀
- 氣道廓清技術(shù)及護(hù)理課件
- 中國(guó)黃金集團(tuán)公司黃金工業(yè)項(xiàng)目初步設(shè)計(jì)
- 《現(xiàn)代漢語(yǔ)語(yǔ)法》PPT課件(完整版)
- SAP培訓(xùn)講義(FICO概覽)V3-中石油
- 全國(guó)江蘇小學(xué)科學(xué)學(xué)科教師基本功大賽試題匯總(共19頁(yè))
- 幕墻工程施工質(zhì)量通病和防治措施方案
評(píng)論
0/150
提交評(píng)論