數(shù)據(jù)與模型安全 課件 第10周:深度偽造與檢測(cè)_第1頁
數(shù)據(jù)與模型安全 課件 第10周:深度偽造與檢測(cè)_第2頁
數(shù)據(jù)與模型安全 課件 第10周:深度偽造與檢測(cè)_第3頁
數(shù)據(jù)與模型安全 課件 第10周:深度偽造與檢測(cè)_第4頁
數(shù)據(jù)與模型安全 課件 第10周:深度偽造與檢測(cè)_第5頁
已閱讀5頁,還剩62頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Deepfakes

and

Detection姜育剛,馬興軍,吳祖煊Recap:

week9MembershipInferenceAttackDifferentialPrivacyThisWeekGeneralTampering(一般數(shù)據(jù)篡改)Deepfake(深度偽造,圖像)DeepfakeVideos(深度偽造,視頻)DetectionDALL·E3OpenAIText2Image,

ImageEditing…Imagen

2GoogleText2Image,

Text2VedioStableDiffusion

3StabilityAIText2Image,

ImageEditing…SignificantProgressinComputerVisionThis

person

does

not

exist,/

AnAI-generatedportraitsoldfor$432,000attheChristie‘s(2018)AIartworkwonfirstprizeinartcompetition.(2022)Theresolutionandfidelityofgeneratedfaceimagesareconstantlyimproving.20192021SignificantProgressinComputerVisionGenerateanimageusingthefirstparagraphof"OneHundredYearsofSolitude"

(2021)DaLL·E2(2022)Generateanimagebasedontext:“Ihave

alwayswantedtobeacoolpandaridingaskateboardinSantaMonica.”Imagic(2022)Editimageswithtext.SignificantProgressinComputerVisionDataTamperingandForgeryDefinition:Tamperimagesandvideoswithvarietyoftechniques,suchasdeepfakes.Accordingtothecontentandtypeofthetampereddata:

generaltampering&faceforgery.

AfakeimageaboutBushJr.electionThisWeek

GeneralTamperingDeepfakeDeepfakeVideosDetectionGeneralTamperingDefinition:tampertheoriginalimagebyadjustingthespatialpositionofobjects,replacingtheoriginalcontentwithforgedcontent(stylemodification,texturetransformation,imagerestoration…)

TaxonomyContext-basedtamperforegroundobjectstamperimagebackgroundConditionedText-guidedimagetamperingGeneralTamperingModeldifferentelementsintheimage:theshapeofobjects,theinteractionbetweenobjectsandtheirrelativepositions,…

?CoreProblem:howtodecoupledifferentelementsinanimage?(Foreground&Background,Texture&Structure,…)ForegroundTamperingConstructobject-levelsemanticsegmentationmapsHong,S

et

al.

Learninghierarchicalsemanticimagemanipulationthroughstructured

representations.

NeurIPS,

2018.BackgroundTamperingZou,Z

et

al.Castleinthesky:dynamicskyreplacementandharmonizationinvideos.

IEEETransactionsonImageProcessing.

2022.thebackgroundcanbeviewedasalargerobjectText-guidedTampering|CLIPRadford,A.

et

al.Learningtransferablevisualmodelsfromnaturallanguagesupervision.

ICML,

2021.Text-guidedTampering|CLIP+StyleGANPatashnik,O.

et

al.Styleclip:text-drivenmanipulationofstyleganimagery.

ICCV,

2021.Text-guidedTampering|StyleGANLatent

codeMapping

functionResidual

codetarget

codePatashnik,O.

et

al.Styleclip:text-drivenmanipulationofstyleganimagery.

ICCV,

2021.Text-guidedTampering|DiffusionHo,J.

et

al.Denoisingdiffusionprobabilisticmodels.NeurIPS,

2020.ThedirectedgraphicalmodelofDDPMGraphicalmodelsfordiffusion(left)andnon-Markovian(right)inferencemodelsSong,J.

et

al.Denoisingdiffusionimplicitmodels.ICLR,

2022.Text-guidedTampering|CLIP+DiffusionRombachR.etal.High-resolutionimagesynthesiswithlatentdiffusionmodels,

CVPR,2022.StableDiffusionThisWeekGeneralTampering

DeepfakeDeepfakeVideosDetectionDeepfakeDefinition:

believablemediageneratedbyadeepneuralnetworkForm:

generation&manipulationofhumanimageryDeeplearning+fakeGANs(GenerativeAdversarialNetworks)Derivesfromthe“zero-sumgame”ingametheory.LearnthedistributionofdatathroughaGeneratorandaDiscriminatorFaceForgeryAlice’sbodywithBob’sfaceAliceBobDatacollectionModeltrainingDeepfakefaceforgeryFaceForgeryDatacollectionModeltrainingDeepfakefaceforgeryFaceForgeryDatacollectionModeltrainingDeepfakefaceforgeryFaceForgeryReenactment(人臉重演)Replacement(人臉互換)Editing(人臉編輯)Synthesis(人臉合成)MirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys(CSUR),2021,54(1):1-41.

FaceForgerySTEPS:DetectsandcropsthefaceExtractsintermediaterepresentationsGeneratesanewfacebasedonsomedrivingsignalBlendsthegeneratedfacebackintothetargetframeMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys(CSUR),2021,54(1):1-41.FaceReenactmentSTEPSingeneral:facetracking(面部追蹤)facematching(面部匹配)facetransfer(面部遷移)PareidoliaFaceReenactmentSong,L.

et

al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,

2021.pareidoliafacereenactmentPareidoliaFaceReenactmentChallengesThetargetfacesarenothumanfaces1Shapevariance2Texturevariancee.g.squaremouthe.g.woodtextureSong,L.

et

al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,

2021.PURAParametricUnsupervisedReenactmentAlgorithmParametricShapeModeling(PSM,參數(shù)化形狀建模)ExpansionaryMotionTransfer(EMT,擴(kuò)展運(yùn)動(dòng)遷移)UnsupervisedTextureSynthesizer

(UTS,無監(jiān)督紋理合成器)Song,L.

et

al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,

2021.PURAParametricUnsupervisedReenactmentAlgorithmSong,L.

et

al.Everything‘stalkin’:pareidoliafacereenactment.CVPR,

2021.FaceReplacement|SimswapHighFidelityFaceSwappingChen,R.

et

al.Simswap:anefficientframeworkforhighfidelityfaceswapping.ACMMM,

2021.?lacktheabilitytogeneralizetoarbitraryidentity?failtopreserveattributeslikefacialexpressionandgazedirectionIDInjectionModule(IIM)(身份注入模塊)WeakFeatureMatchingLoss(弱特征匹配損失)FaceReplacement|SimswapHighFidelityFaceSwappingChen,R.,et

al.

Simswap:anefficientframeworkforhighfidelityfaceswapping.ACMMM,

2020FaceReplacement|SimswapIdentityLossWeakFeatureMatchingLossChen,R.,et

al.

Simswap:anefficientframeworkforhighfidelityfaceswapping.ACMMM,

2020ThisWeekGeneralTamperingDeepfake

DeepfakeVideosDetectionDeepfakeVideosMoredimensions:TiminginformationTherelativepositionofdifferentsubjectsandobjectsAudiofakesDeepfakeVideosChallengesHowtogeneratereasonablegesturesHowtogenerateafakevideoinhighresolutionHowtogeneratehigh-qualitylongvideosReasonableGesturesSiarohin,A.

et

al.Firstordermotionmodelforimageanimation.

NeurIPS,

2-19.First-order-motionModelReasonableGesturesSiarohin,A.

et

al.

Firstordermotionmodelforimageanimation.

NeurIPS,

2019.MotionEstimationModuleUseasetoflearnedkeypointsandtheiraffinetransformationstopredictdensemotionReasonableGesturesGenerationModuleWarpthesourceimageaccordingtoInpainttheimagepartsthatareoccludedinthesourceimage.Siarohin,A.

et

al.

Firstordermotionmodelforimageanimation.

NeurIPS,

2019.HighResolutionTian,Y.,

et

al.

Agoodimagegeneratoriswhatyouneedforhigh-resolutionvideosynthesis.ICLR,

2022.MoCoGAN-HDHigh-qualityLongVideosYu,S.

et

al.Generatingvideoswithdynamics-awareimplicitgenerativeadversarialnetworks.arXivpreprintarXiv:2202.10571.DIGANThisWeekGeneralTamperingDeepfakeDeepfakeVideos

DetectionTamperingDetectionTaxonomy:GeneralTamperingDetection——whetheranordinaryobjectinanimagehasbeentamperedwithDeepfakeDetection——whetherthepartofthefaceintheimagehasbeentamperedwithFeatures&SemanticsGeneralTamperingDetectionExistinggeneraltamperingdetectionmethodsmainlyfocusonsplicing,copy-moveandremovalGeneralTamperingDetectionEarlydetectionmethodsImageTamperingThecorrelationbetweenpixelsintroducedduringcameraimaging(LCA,…)Thefrequency-domainorstatisticalfeaturesoftheimageandthenoiseitcontains(PRNU)GeneralTamperingDetectionCopy-moveDetectionMethodsBlock-basedregionduplicationDivideanimageintomanyequal-sizeblocks,andifduplicatedregionsexistintheimage,thereshouldbeduplicatedblocksaswell.Comparetheblocks.(Pixelvalues,Statisticalmeasures,Frequencycoefficients,Momentinvariants,…)Keypoint-basedregionduplicationConcentrateonafewkeypointswithinanimagesothecomputationcostcanbesignificantlyreduced.(SIFT,SURF)SplicingDetectionMethodsEdgeanomalyRegionanomaly:JPEGcompressionRegionanomaly:lightinginconsistencyRegionanomaly:inconsistencesofcameratracesGeneralTamperingDetectionGeneralTamperingDetectionRemovalDetectionMethodsBlurringartifactsbydiffusion-basedtamperingBlockduplicationbyexemplar-basedtamperingGeneralTamperingDetectionLaterdetectionmethods(DL)Medianfilteringforensics+CNN(Chenetal.,2015)RGB-N(Zhouetal.,2018)SPAN,spatialpyramidattentionnetwork(Huetal.,2020)Mantra-Net(Wuetal.,2019)PSCC-Net,progressivespatio-channelcorrelationnetwork(Liuetal.,2022)CountermeasuresDetectionPreventionMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021,54(1):1-41.Detection|Artifact-specificDeepfakesoftengenerateartifactswhichmaybesubtletohumans,butcanbeeasilydetectedusingmachinelearningandforensicanalysis.Blending

(spatial)Environment(spatial)

Forensics(spatial)

Behavior(temporal)Physiology(temporal)Synchronization

(temporal)Coherence(temporal)MirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021,54(1):1-41.BlendingTrainedaCNNtopredictanimage’sblendingboundaryandalabel(realorfake)LingzhiLi,et

al.Facex-rayformoregeneralfaceforgerydetection.CVPR,

2020.BlendingSplicesimilarfacesfoundthroughfaciallandmarksimilaritytogenerateadatasetoffaceswaps.OverviewofgeneratingatrainingsampleLingzhiLi,et

al.Facex-rayformoregeneralfaceforgerydetection.CVPR,

2020.ForensicsDetectdeepfakesbyanalyzingsubtlefeaturesandpatternsleftbythemodel.GANsleaveuniquefingerprintsItispossibletoclassifythegeneratorgiventhecontent,eveninthepresenceofcompressionandnoiseNingYu

et

al.AttributingfakeimagestoGANs:LearningandanalyzingGANfingerprints.ICCV,

2019.Detection|UndirectedApproachesTraindeepneuralnetworksasgenericclassifiers,andletthenetworkdecidewhichfeaturestoanalyze.ClassificationAnomalyDetectionClassificationTharinduF.,

et

al.

ExploitingHumanSocialCognitionfortheDetectionofFakeandFraudulentFacesviaMemoryNetworks.

arXiv:1911.07844.HierarchicalMemoryNetwork(HMN)architectureAnomalyDetectionanomalydetectionmodelsaretrainedonthenormaldataandthendetectoutliersduringdeployment.RunWang

et

al.Fakespotter:

Asimplebaselineforspottingai-synthesizedfakefaces.arXiv:1909.06122.Monitorneuronbehaviors(coverage)tospotAI-synthesizedfakefaces.Obtainastrongersignalfromthanjustusingtherawpixels.Isabletoovercomenoiseandotherdistortions.Detection|SummaryMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021.Detection|SummaryMirskyY,LeeW.Thecreationanddetectionofdeepfakes:Asurvey.ACMComputingSurveys,2021.Prevention&MitigationDataprovenance(數(shù)據(jù)溯源)Dataprovenanceofmultimediashouldbetrackedthroughdistributedledgersandblockchainnetworks.(Fraga-Lamasetal.,2019)ThecontentshouldberankedbyparticipantsandAI.(Chenetal.,2019.)Thecon

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論