版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Federated
Learning姜育剛,馬興軍,吳祖煊/2017/04/federated-learning-collaborative.htmlRecap:week10口 CommonTamperingandDeepfakes口 ImageManipulationDetection口 VideoManipulationDetectionThisWeek口 FederatedLearning口 PrivacyinFederatedLearning口 RobustnessinFederatedLearning口 ChallengesandFutureResearchTraditionalMachineLearningDataModelDataandmodelinonesingleplaceTraditionalMachineLearningDataModelWhat
if
we
need
more
data?DataGatheringUsingmultipleGPUsFederatedLearning:Whatisit?Google:FederatedLearning:CollaborativeMachineLearningwithoutCentralizedTrainingDataFederatedLearning:Challenges,Methods,andFutureDirections,/pdf/1908.07873.pdfNextwordpredictiononmobile.FederatedMachineLearning:ConceptandApplications,/pdf/1902.04885.pdfHorizontalFL(橫著切):samefeatures,differentsamplesFederatedLearning:TypesVerticalFL(縱著切):samesamples,differentfeaturesFederatedLearning:TypesFederatedMachineLearning:ConceptandApplications,/pdf/1902.04885.pdfFederatedLearning:TypesFederatedTransferLearning:differentsamples,differentfeaturesFederatedMachineLearning:ConceptandApplications,/pdf/1902.04885.pdfCompareDifferentParadigmsFederatedMachineLearning:ConceptandApplications,/pdf/1902.04885.pdfCompareDifferentParadigmshttps:///projects/distributed-learning-and-collaborative-learning-1/overview/SplitLearningvsFederatedLearningFederatedLearningFrameworksHE:homomorphicencryption SS:secretSharingObjectivesandUpdatesinFLGlobalobjectiveLocalobjective:LocalUpdates:GlobalAggregation(e.g.FedAvg):FederatedLearning–MajorChallengesExpensiveCommunicationSystemsHeterogeneityStatisticalHeterogeneityPrivacyandSecurityConcernsFederatedLearning:Challenges,Methods,andFutureDirections,/pdf/1908.07873.pdfFederatedLearning-HorizontalFederatedLearning:Challenges,Methods,andFutureDirections,/pdf/1908.07873.pdfHFLcanfurtherbedividedinto…?PrivacyandSecurityThreatsLyuetal.“Privacyandrobustnessinfederatedlearning:Attacksanddefenses.”TNNLS,2022.SummaryofThreatModelsFLserver(insider)FLparticipants(insider)Eavesdroppers(outsider)Serviceusers(outsider)□InsidervsOutsider □InsiderAttacksByzantine:theworstattacker,knowseverythingaboutthesystem,doesnotobeytheprotocol,sendarbitraryupdates,evencolludewitheachother.Sybil:takingoverthenetworkbysimulatingmanydummyparticipants,out-votethehonestusersSemi-honestvsMaliciousSemi-honestsettingMalicioussettingTraining-timevsTest-timeStealprivatedata,stealmodel,corruptthemodel(trainingtime)Adversarialattack(testtime)SummaryofAttacksExistingattacksagainstserver-basedFLPoisoningAttacksDatapoisoningvsmodel(weight)poisoningDataPoisoningAttacksinTraditionalML□Dirty-labelPoisoningLabelflipping(onlychangelabels)Dirty-labelbackdoor(changeinputsandlabels)Clean-labelPoisoningClean-labelbackdoor(onlychangeinputs)DataPoisoningAttacksinTraditionalMLAsimplepatterncanmakethemodeltomemorizeFLPoisoningAttacks–ModelPoisoningMaincharacteristics:ChangelocalmodelweightsMostlyByzantineattack(attackercandoanythingtotheweights)CanattackByzantine-robustaggregationmechanismssuchasKrumandcoordinate-wisemedianinsteadofweightedaveragingKrum:PrivacyAttacksForeverycommunicationround,localclientshavethechancetoreverseengineerothers’gradients.Fromthereversedgradients,reverseengineer:RepresentationsMembershipPropertiesSensitiveattributesInVFL:featuresPrivacyAttacks–InferenceAttacksDeepmodelsundertheGAN:informationleakagefromcollaborativedeeplearning,CCS2017InferenceclassrepresentationsusingGANsCIFAR-10horseclassReconstructAlice’sfaceimagePrivacyAttacks–InferenceAttacksComprehensiveprivacyanalysisofdeeplearning:Passiveandactivewhite-boxinferenceattacksagainstcentralizedandfederatedlearning,S&P,2019Inferencemembership:Passiveattacks:observeandinference.Activeattacks:influencethetargetmodelinordertoextractmoreinformation.WeaknessofFL:FLcreatesanenvironmentfor(almost)white-boxattacksPrivacyAttacks–InferenceAttacksOtherinferenceattacks:inferringproperties,trainingdata,labels...DeepLeakagefromGradient(DLG)ImprovedDeepLeakagefromGradient(iDLG)…Defenses–PrivacyDefenseHomomorphic
Encryption:RSAEl
GamalPaillier…Homomorphic
properties:Allows
computation
directly
onencrypted
data(“可算不可見”)Needs
to
be
designed
for
eachalgorithmA
side
note:
attacking
encrypted
FL
is
challengingbut
still
possible!Defenses–PrivacyDefense2.
SecureMultipartyComputation(SMC,Yaosharing):SecureML(data-independentofflinephase+fastonlinephase)Offlinemultiplicationtriplets,truncate,sharingCharacteristics:HighlevelprivacyHighcomputationandcommunicationcostYao'sMillionaires'problemProtocolsforSecureComputations,AndrewChi-ChihYao,1982,UCBerkeleyDefenses–PrivacyDefense2.DifferentialPrivacy(DP):TypesofDP:LocalDPCentralizedDPDistributedDPDefenses–PrivacyDefenseDataflowofstatisticsunderLDP2.DifferentialPrivacy(DP):Defenses–PrivacyDefense2.DifferentialPrivacy(DP):TypesoffrequencyestimationDefenses–PrivacyDefense2.DifferentialPrivacy(DP):Real-worldapplications.Vanilla
FLM:ADPmechanismCentralized
DPM:ADPmechanismLocal
DPM:ADPmechanismE:encryptionD:decryptionDistributed
DPDefenses–ByzantineDefenseAlgorithm:Krum(forByzantinerobustness)Setting:nparticipants,fareByzantine,with??≥????+??Atcommunicationroundt,?? ?? ??serverreceives{????,????,…,????}foreach????:??selecttheclosest(L2distance)n-f-2intoset????compute??????????????=∑?? ??∈???? ????????????? ????????????=???=argmin{?????????????? ,…,??????????????}updateglobalparameter:????.??=????+??????????Blanchardetal.“Machinelearningwithadversaries:Byzantinetolerantgradientdescent.”NeurIPS,2017.Defenses–ByzantineDefenseAlgorithm:Krum(forByzantinerobustness)Blanchard
et
al.
“Machine
learning
with
adversaries:
Byzantine
tolerant
gradient
descent.”
NeurIPS,
2017.紅色:攻擊梯度藍色:真實梯度黑色:本地梯度黑色曲線:損失函數(shù)Defenses–ByzantineDefenseMorerobustaggregationmethods:Multi-Krum=Krum+Averaging=Krumrobustness+increasedconvergencespeedcoordinate-wisemedian,coordinate-wisetrimmedmeanmedianisnotgoodforconvergenceBulyan=Krum+trimmedmedianMedianandgeometric-median(RobustFederatedAggregation)RFA:approximategeometricmedian(notrobusttoByzantineattacks)Defenses–ByzantineDefenseModelpoisoningattackcanbreakKrumandcoordinate-wisemedianAnalyzingfederatedlearningthroughanadversariallens,ICML2019.??/:adversarialtargetclassr:numberofpoisonedsamples??0:cleandata1???2:estimationoftheglobalparametersReversedgradientsfromthelastround.Defenses–SybilDefenseFromtraditionalML:RejectonNegativeInfluence(RONI)WithacleanvalidationdatasetItrequiresuniformdistributioninnon-IIDsetting,notgood.FoolsGold:Sybilsharethesameobjective,driftsawayfromtheoriginalobjectiveCoreidea:cosinesimilarityFoolsGold:MitigatingSybilsinFederatedLearningPoisoning,/abs/1808.04866Defenses–SybilDefenseDistributedbackdoorattack(DBA)canbypassbothRFAandFoolsGold.DBA:Distributed
Backdoor
Attacks
against
Federated
Learning,
ICLR
2020.
Defenses
-
SummaryDefenseagainstFederatedLearningPoisoning.n:numberofparticipants.RemainingChallengesandFutureResearch□ CurseofdimensionalityLargermodelsaremorevulnerableSharingweights/gradientsmaynotbeagoodidea□ WeaknessesofcurrentattacksGANattackassumestheclassofdataisfromonesingleparticipantDLG/iDLGworkwithsecond-ordergradientmethod(expensive)andsmallminibatch-gradients(B=8)□ Vulnerabilitytofreeriders:pretendtohavedatabutnot.□ WeaknessofCurrentPrivacy-preservingTechniquesSecureaggregationismorevulnerabletopoisoningattacks
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國嬰兒紙尿布市場競爭格局展望及投資策略分析報告
- 2024-2030年中國復(fù)方氫氧化鋁咀嚼片項目申請報告
- 2024年三方環(huán)保項目居間服務(wù)合同2篇
- 2024年某汽車公司與經(jīng)銷商之間的汽車銷售代理合同
- 梅河口康美職業(yè)技術(shù)學(xué)院《納米材料自科類》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年版新員工停薪留職協(xié)議模板下載版B版
- 微專題化學(xué)與生活-2024高考化學(xué)一輪考點擊破
- 滿洲里俄語職業(yè)學(xué)院《生物工程與技術(shù)導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年智能工廠建設(shè)與運營合同
- 2024書法藝術(shù)展覽館建設(shè)與運營合作協(xié)議2篇
- 爭做“四有好老師”-當好“四個引路人”
- DB37-T 4706-2024事故車輛損失鑒定評估規(guī)范
- 人教版二年級數(shù)學(xué)上冊全冊表格式教案
- 2024-2030年中國高壓電力變壓器行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 國家開放大學(xué)電大本科《工程經(jīng)濟與管理》2023-2024期末試題及答案(試卷號:1141)
- 監(jiān)理項目管理 投標方案(技術(shù)方案)
- 電影作品讀解智慧樹知到期末考試答案章節(jié)答案2024年西北大學(xué)
- 公務(wù)員職業(yè)道德建設(shè)和素質(zhì)能力提升培訓(xùn)課件(共37張)
- 稻田流轉(zhuǎn)合同范本
- 幼兒園故事繪本《賣火柴的小女孩兒》課件
- 2024年人教版初二政治上冊期末考試卷(附答案)
評論
0/150
提交評論