版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆吉林省延邊朝鮮族自治州汪清四中高二上數(shù)學(xué)期末綜合測(cè)試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的兩個(gè)焦點(diǎn)為,,是此雙曲線上的一點(diǎn),且滿足,,則該雙曲線的方程是()A. B.C. D.2.已知圓,圓,M,N分別是圓上的動(dòng)點(diǎn),P為x軸上的動(dòng)點(diǎn),則以的最小值為()A B.C. D.3.已知橢圓,則橢圓的長(zhǎng)軸長(zhǎng)為()A.2 B.4C. D.84.直線的傾斜角大小為()A. B.C. D.5.如圖,在長(zhǎng)方體中,,E,F(xiàn)分別為的中點(diǎn),則異面直線與所成角的余弦值為()A. B.C. D.6.已知圓與拋物線的準(zhǔn)線相切,則實(shí)數(shù)p的值為()A.2 B.6C.3或8 D.2或67.設(shè)等差數(shù)列前項(xiàng)和為,若是方程的兩根,則()A.32 B.30C.28 D.268.已知拋物線的方程為,則此拋物線的準(zhǔn)線方程為()A. B.C. D.9.已知是橢圓與雙曲線的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且,線段的垂直平分線過(guò),若橢圓的離心率為,雙曲線的離心率為,則的最小值為()A. B.3C.6 D.10.等差數(shù)列中,是的前項(xiàng)和,,則()A.40 B.45C.50 D.5511.已知為偶函數(shù),且當(dāng)時(shí),,其中為的導(dǎo)數(shù),則不等式的解集為()A. B.C. D.12.以下四個(gè)命題中,正確的是()A.若,則三點(diǎn)共線B.C.為直角三角形的充要條件是D.若為空間的一個(gè)基底,則構(gòu)成空間的另一個(gè)基底二、填空題:本題共4小題,每小題5分,共20分。13.在數(shù)列中,,,記是數(shù)列的前項(xiàng)和,則=___.14.已知數(shù)列的前項(xiàng)和為,,則___________,___________.15.已知圓錐底面半徑為1,高為,則該圓錐的側(cè)面積為_(kāi)____16.已知為拋物線上的動(dòng)點(diǎn),,,則的最小值為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(1)當(dāng)時(shí),討論的單調(diào)性;(2)當(dāng)時(shí),證明18.(12分)如圖,已知四棱臺(tái)的上、下底面分別是邊長(zhǎng)為2和4的正方形,,且底面,點(diǎn)分別在棱、上·(1)若P是的中點(diǎn),證明:;(2)若平面,二面角的余弦值為,求四面體的體積19.(12分)已知橢圓的離心率為,且其左頂點(diǎn)到右焦點(diǎn)的距離為.(1)求橢圓的方程;(2)設(shè)點(diǎn)、在橢圓上,以線段為直徑的圓過(guò)原點(diǎn),試問(wèn)是否存在定點(diǎn),使得到直線的距離為定值?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)理由.20.(12分)數(shù)列的前n項(xiàng)和為,(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前n項(xiàng)和21.(12分)設(shè)等差數(shù)列的各項(xiàng)均為整數(shù),且滿足對(duì)任意正整數(shù),總存在正整數(shù),使得,則稱這樣的數(shù)列具有性質(zhì)(1)若數(shù)列的通項(xiàng)公式為,數(shù)列是否具有性質(zhì)?并說(shuō)明理由;(2)若,求出具有性質(zhì)的數(shù)列公差的所有可能值;(3)對(duì)于給定的,具有性質(zhì)的數(shù)列是有限個(gè),還是可以無(wú)窮多個(gè)?(直接寫(xiě)出結(jié)論)22.(10分)已知函數(shù),其中.(1)當(dāng)時(shí),求函數(shù)的單調(diào)性;(2)若對(duì),不等式在上恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由,可得進(jìn)一步求出,由此得到,則該雙曲線的方程可求【詳解】,即,則.即,則該雙曲線的方程是:故選:A【點(diǎn)睛】方法點(diǎn)睛:求圓錐曲線的方程,常用待定系數(shù)法,先定式(根據(jù)已知確定焦點(diǎn)所在的坐標(biāo)軸,設(shè)出曲線的方程),再定式(根據(jù)已知建立方程組解方程組得解).2、A【解析】求出圓關(guān)于軸的對(duì)稱圓的圓心坐標(biāo),以及半徑,然后求解圓與圓的圓心距減去兩個(gè)圓的半徑和,即可求出的最小值.【詳解】圓關(guān)于軸對(duì)稱圓的圓心坐標(biāo),半徑為1,圓的圓心坐標(biāo)為,半徑為3,易知,當(dāng)三點(diǎn)共線時(shí),取得最小值,的最小值為圓與圓的圓心距減去兩個(gè)圓的半徑和,即:.故選:A.注意:9至12題為多選題3、B【解析】根據(jù)橢圓的方程求出即得解.【詳解】解:由題得橢圓的所以橢圓的長(zhǎng)軸長(zhǎng)為.故選:B4、B【解析】將直線方程變?yōu)樾苯厥?,根?jù)斜率與傾斜角關(guān)系可直接求解.【詳解】由直線可得,所以,設(shè)傾斜角為,則因?yàn)樗怨蔬x:B5、A【解析】利用平行線,將異面直線的夾角問(wèn)題轉(zhuǎn)化為共面直線的夾角問(wèn)題,再解三角形.【詳解】取BC中點(diǎn)H,BH中點(diǎn)I,連接AI、FI、,因?yàn)镋為中點(diǎn),在長(zhǎng)方體中,,所以四邊形是平行四邊形,所以所以,又因?yàn)镕為的中點(diǎn),所以,所以,則即為異面直線與所成角(或其補(bǔ)角).設(shè)AB=BC=4,則,則,,根據(jù)勾股定理:,,,所以是等腰三角形,所以.故B,C,D錯(cuò)誤.故選:A.6、D【解析】由拋物線準(zhǔn)線與圓相切,結(jié)合拋物線方程,令求切線方程且拋物線準(zhǔn)線方程為,即可求參數(shù)p.【詳解】圓的標(biāo)準(zhǔn)方程為:,故當(dāng)時(shí),有或,所以或,得或6故選:D7、A【解析】根據(jù)給定條件利用韋達(dá)定理結(jié)合等差數(shù)列性質(zhì)計(jì)算作答.【詳解】因是方程的兩根,則又是等差數(shù)列的前項(xiàng)和,于是得,所以.故選:A8、A【解析】由拋物線的方程直接寫(xiě)出其準(zhǔn)線方程即可.【詳解】由拋物線的方程為,則其準(zhǔn)線方程為:故選:A9、C【解析】利用橢圓和雙曲線的性質(zhì),用橢圓雙曲線的焦距長(zhǎng)軸長(zhǎng)表示,再利用均值不等式得到答案【詳解】設(shè)橢圓長(zhǎng)軸,雙曲線實(shí)軸,由題意可知:,又,,兩式相減,可得:,,.,,當(dāng)且僅當(dāng)時(shí)取等號(hào),的最小值為6,故選:C【點(diǎn)睛】本題考查了橢圓雙曲線的性質(zhì),用橢圓雙曲線的焦距長(zhǎng)軸長(zhǎng)表示是解題的關(guān)鍵,意在考查學(xué)生的計(jì)算能力10、B【解析】應(yīng)用等差數(shù)列的性質(zhì)“若,則”即可求解【詳解】故選:B11、A【解析】根據(jù)已知不等式和要求解的不等式特征,構(gòu)造函數(shù),將問(wèn)題轉(zhuǎn)化為解不等式.通過(guò)已知條件研究g(x)的奇偶性和單調(diào)性即可解該不等式.【詳解】令,則根據(jù)題意可知,,∴g(x)是奇函數(shù),∵,∴當(dāng)時(shí),,單調(diào)遞減,∵g(x)是奇函數(shù),g(0)=0,∴g(x)在R上單調(diào)遞減,由不等式得,.故選:A.12、D【解析】利用向量共線的推論可判斷A,利用數(shù)量積的定義可判斷B,利用充要條件的概念可判斷C,利用基底的概念可判斷D.【詳解】對(duì)于A,若,,所以三點(diǎn)不共線,故A錯(cuò)誤;對(duì)于B,因?yàn)?,故B錯(cuò)誤;對(duì)于C,由可推出為直角三角形,由為直角三角形,推不出,所以為直角三角形的充分不必要條件是,故C錯(cuò)誤;對(duì)于D,若為空間的一個(gè)基底,則不共面,若不能構(gòu)成空間的一個(gè)基底,設(shè),整理可得,即共面,與不共面矛盾,所以能構(gòu)成空間的另一個(gè)基底,故D正確.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、930【解析】當(dāng)為偶數(shù)時(shí),,所以數(shù)列前60項(xiàng)中偶數(shù)項(xiàng)的和,當(dāng)為奇數(shù)時(shí),,因此數(shù)列是以1為首項(xiàng),公差為2等差數(shù)列,前60項(xiàng)中奇數(shù)項(xiàng)的和為,所以.考點(diǎn):遞推數(shù)列、等差數(shù)列.14、①.②.【解析】第一空:由,代入已知條件,即可解得結(jié)果;第二空:由與關(guān)系可推導(dǎo)出之間的關(guān)系,再由遞推公式即可求出通項(xiàng)公式.【詳解】,可得由,可知時(shí),故時(shí)即可化為又故數(shù)列是首項(xiàng)為公比為2的等比數(shù)列,故數(shù)列的通項(xiàng)公式故答案為:①;②15、【解析】由已知求得母線長(zhǎng),代入圓錐側(cè)面積公式求解【詳解】由已知可得r=1,h=,則圓錐的母線長(zhǎng)l=,∴圓錐的側(cè)面積S=πrl=2π故答案為2π【點(diǎn)睛】本題考查圓錐側(cè)面積的求法,側(cè)面積公式S=πrl.16、6【解析】根據(jù)拋物線的定義把的長(zhǎng)轉(zhuǎn)化為到準(zhǔn)線的距離為,進(jìn)而數(shù)形結(jié)合求出最小值.【詳解】易知為拋物線的焦點(diǎn),設(shè)到準(zhǔn)線的距離為,則,而的最小值為到準(zhǔn)線的距離,故的最小值為.故答案為:6三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)單調(diào)遞減,在單調(diào)遞增;(2)見(jiàn)解析.【解析】(1)求f(x)導(dǎo)數(shù),討論導(dǎo)數(shù)的正負(fù)即可求其單調(diào)性;(2)由于,則,只需證明,構(gòu)造函數(shù),證明其最小值大于0即可.【小問(wèn)1詳解】時(shí),,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,∴在單調(diào)遞減,在單調(diào)遞增;【小問(wèn)2詳解】由于,∴,∴只需證明,令,則,∴在上為增函數(shù),而,∴在上有唯一零點(diǎn),且,當(dāng)時(shí),,g(x)單調(diào)遞減,當(dāng)時(shí),,g(x)單調(diào)遞增,∴的最小值為,由,得,則,∴,當(dāng)且僅當(dāng)時(shí)取等號(hào),而,∴,∴,即,∴當(dāng)時(shí),.【點(diǎn)睛】本題考察了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,也考察了利用導(dǎo)數(shù)研究函數(shù)的最值,解題過(guò)程中設(shè)計(jì)到隱零點(diǎn)的問(wèn)題,需要掌握隱零點(diǎn)處理問(wèn)題的常見(jiàn)思路和方法.18、(1)證明見(jiàn)解析(2)【解析】(1)建立空間直角坐標(biāo)系,利用空間向量的坐標(biāo)運(yùn)算知,即可證得結(jié)論;(2)利用空間向量結(jié)合已知的面面角余弦值可求得,再利用線面平行的已知條件求得,再將四面體視為以為底面的三棱錐,利用錐體的體積公式即可得解.【小問(wèn)1詳解】以為坐標(biāo)原點(diǎn),,,所在直線分別為,,軸建立空間直角坐標(biāo)系,則,,,,設(shè),其中,,若是的中點(diǎn),則,,,于是,∴,即【小問(wèn)2詳解】由題設(shè)知,,,是平面內(nèi)的兩個(gè)不共線向量設(shè)是平面的一個(gè)法向量,則,取,得又平面的一個(gè)法向量是,∴,而二面角的余弦值為,因此,解得或(舍去),此時(shí)設(shè),而,由此得點(diǎn),,∵平面,且平面的一個(gè)法向量是,∴,即,解得,從而將四面體視為以為底面的三棱錐,則其高,故四面體的體積【點(diǎn)睛】方法點(diǎn)睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結(jié)合圖形,作出所求空間角,再結(jié)合題中條件,解對(duì)應(yīng)的三角形,即可求出結(jié)果;(2)向量法:建立適當(dāng)?shù)目臻g直角坐標(biāo)系,通過(guò)計(jì)算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結(jié)果.19、(1);(2)存在,.【解析】(1)由題設(shè)可知求出,再結(jié)合,從而可求出橢圓的方程,(2)①若直線與軸垂直,由對(duì)稱性可知,代入橢圓方程可求得結(jié)果,②若直線不與軸垂直,設(shè)直線的方程為,將直線方程與橢圓方程聯(lián)立方程組,消去,然后利用根與系數(shù)的關(guān)系,設(shè),,再由條件,得,從而得,再利用點(diǎn)到直線的距離公式可求得結(jié)果【詳解】(1)由題設(shè)可知解得,,,所以橢圓的方程為:;(2)設(shè),,①若直線與軸垂直,由對(duì)稱性可知,將點(diǎn)代入橢圓方程,解得,原點(diǎn)到該直線的距離;②若直線不與軸垂直,設(shè)直線的方程為,由消去得,則由條件,即,由韋達(dá)定理得,整理得,則原點(diǎn)到該直線的距離;故存在定點(diǎn),使得到直線的距離為定值.20、(1);(2).【解析】(1)根據(jù)給定條件結(jié)合“當(dāng)時(shí),”計(jì)算作答.(2)由(1)求出,利用裂項(xiàng)相消法計(jì)算得解.【小問(wèn)1詳解】數(shù)列的前n項(xiàng)和為,,當(dāng)時(shí),,當(dāng)時(shí),,滿足上式,則,所以數(shù)列的通項(xiàng)公式是【小問(wèn)2詳解】由(1)知,,所以,所以數(shù)列的前n項(xiàng)和21、(1)數(shù)列具有性質(zhì),理由見(jiàn)解析;(2),;(3)有限個(gè).【解析】(1)由題意,由性質(zhì)定義,即可知是否具有性質(zhì).(2)由題設(shè),存在,結(jié)合已知得且,則,由性質(zhì)的定義只需保證為整數(shù)即可確定公差的所有可能值;(3)根據(jù)(2)的思路,可得且,由為整數(shù),在為定值只需為整數(shù),即可判斷數(shù)列的個(gè)數(shù)是否有限.【小問(wèn)1詳解】由,對(duì)任意正整數(shù),,說(shuō)明仍為數(shù)列中的項(xiàng),∴數(shù)列具有性質(zhì).【小問(wèn)2詳解】設(shè)的公差為.由條件知:,則,即,∴必有且,則,而此時(shí)對(duì)任意正整數(shù),,又必一奇一偶,即為非負(fù)整數(shù)因此,只要為整數(shù)且,那么為中的一項(xiàng).易知:可取,對(duì)應(yīng)得到個(gè)滿足條件的等差數(shù)列.【小問(wèn)3詳解】同(2)知:,則,∴必有且,則,故任意給定,公差均為有限個(gè),∴具有性質(zhì)的數(shù)列是有限個(gè).【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:根據(jù)性質(zhì)的定義,在第2、3問(wèn)中判斷滿足等差數(shù)列通項(xiàng)公式,結(jié)合各項(xiàng)均為整數(shù),判斷公差的個(gè)數(shù)是否
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 12690.20-2024稀土金屬及其氧化物中非稀土雜質(zhì)化學(xué)分析方法第20部分:稀土氧化物中微量氟、氯的測(cè)定離子色譜法
- 本周工作總結(jié)與下周工作計(jì)劃報(bào)告
- 2025年禁毒宣傳工作計(jì)劃例文
- 個(gè)人教學(xué)計(jì)劃范文集合
- 做好班級(jí)家長(zhǎng)工作計(jì)劃
- 個(gè)人工作計(jì)劃書(shū)的寫(xiě)作模板
- 學(xué)年度第二學(xué)期四年級(jí)班主任個(gè)人工作計(jì)劃
- 2025護(hù)理個(gè)人的工作計(jì)劃范文
- 銀行新員工個(gè)人工作計(jì)劃
- 2025年“心起點(diǎn)”工作室開(kāi)學(xué)工作計(jì)劃范文
- 江蘇省2025屆高三第一次模擬考試英語(yǔ)試卷含解析
- 教研組匯報(bào)課件
- 貴州省貴陽(yáng)市2023-2024學(xué)年高一上學(xué)期語(yǔ)文期末考試試卷(含答案)
- 化學(xué)必修一人教版知識(shí)點(diǎn)總結(jié)(超全)
- 肺部感染性疾病支氣管肺泡灌洗病原體檢測(cè)中國(guó)專家共識(shí)(2017年)
- 高中化學(xué)解題方法大全
- 2024贊助合同模板
- 理賠基礎(chǔ)知識(shí)培訓(xùn)
- 第六單元《多邊形的面積》 單元測(cè)試(含答案)2024-2025學(xué)年人教版五年級(jí)數(shù)學(xué)上冊(cè)
- 小學(xué)勞動(dòng)教育實(shí)施情況調(diào)查問(wèn)卷(含教師卷和學(xué)生卷)及調(diào)查結(jié)論
- 江西省南昌市雷式學(xué)校2024-2025學(xué)年八年級(jí)上學(xué)期第一次月考物理試卷
評(píng)論
0/150
提交評(píng)論