版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省農(nóng)興中學2025屆數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若一個正方體的全面積是72,則它的對角線長為()A. B.12C. D.62.由下面的條件一定能得出為銳角三角形的是()A. B.C. D.3.“且”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件4.拋物線y=4x2的焦點坐標是()A.(0,1) B.(1,0)C. D.5.已知等差數(shù)列{an}中,a4+a9=8,則S12=()A.96 B.48C.36 D.246.已知等比數(shù)列,且,則()A.16 B.32C.24 D.647.設(shè)為數(shù)列的前n項和,,且滿足,若,則()A.2 B.3C.4 D.58.在圓上任取一點P,過點P作x軸的垂線段PD,D為垂足,當點P在圓上運動時,線段PD的中點M的軌跡記為C,則曲線C的離心率為()A. B.C. D.9.已知,為橢圓的左、右焦點,P為橢圓上一點,若,則P點的橫坐標為()A. B.C.4 D.910.設(shè)村莊外圍所在曲線的方程可用表示,村外一小路所在直線方程可用表示,則從村莊外圍到小路的最短距離為()A. B.C. D.11.已知正的邊長為,那么的平面直觀圖的面積為()A. B.C. D.12.已知點的坐標為(5,2),F(xiàn)為拋物線的焦點,若點在拋物線上移動,當取得最小值時,則點的坐標是A.(1,) B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點處的切線方程為_______.14.若直線l經(jīng)過A(2,1),B(1,)兩點,則l的斜率取值范圍為_________________;其傾斜角的取值范圍為_________________.15.已知從某班學生中任選兩人參加農(nóng)場勞動,選中兩人都是男生的概率是,選中兩人都是女生的概率是,則選中兩人中恰有一人是女生的概率為______16.若數(shù)列滿足,,則__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線的漸近線方程為,且過點(1)求雙曲線的方程;(2)過雙曲線的一個焦點作斜率為的直線交雙曲線于兩點,求弦長18.(12分)已知等比數(shù)列滿足(1)求的通項公式;(2)記的前n項和為,證明:,,成等差數(shù)列19.(12分)已知拋物線的頂點是坐標原點,焦點在軸上,且拋物線上的點到焦點的距離是5.(1)求該拋物線的標準方程和的值;(2)若過點的直線與該拋物線交于,兩點,求證:為定值.20.(12分)設(shè)拋物線的焦點為,點在拋物線上,且,橢圓右焦點也為,離心率為(1)求拋物線方程和橢圓方程;(2)若不經(jīng)過的直線與拋物線交于、兩點,且(為坐標原點),直線與橢圓交于、兩點,求面積的最大值21.(12分)在等比數(shù)列{}中,(1),,求;(2),,求的值.22.(10分)如圖1,已知矩形中,,E為上一點且.現(xiàn)將沿著折起,使點D到達點P的位置,且,得到的圖形如圖2.(1)證明為直角三角形;(2)設(shè)動點M在線段上,判斷直線與平面位置關(guān)系,并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)全面積得到正方體的棱長,再由勾股定理計算對角線.【詳解】設(shè)正方體的棱長為,對角線長為,則有,解得,從而,解得.故選:D2、D【解析】對于A,兩邊平方得,由得,即為鈍角;對于B,由正弦定理求出,進而求出,可得結(jié)果;對于C,根據(jù)平方關(guān)系將余弦化為正弦,用正弦定理可將角轉(zhuǎn)化為邊,進而可得的值,從而作出判斷;對于D,由可得,推出,,,故可知三個內(nèi)角均為銳角【詳解】解:對于A,由,兩邊平方整理得,,因為,所以,所以,所以,所以為鈍角三角形,故A不正確;對于B,由,得,所以,因為,所以,所以或,所以或,所以為直角三角形或鈍角三角形,故B不正確;對于C,因為,所以,即,由正弦定理得,由余弦定理得,因為,所以,故三角形為鈍角三角形,C不正確;對于D,由可得,因為中最多只有一個鈍角,所以,,中最多只有一個為負數(shù),所以,,,所以中三個內(nèi)角都為銳角,所以為銳角三角形,故D正確;故選:D3、B【解析】根據(jù)充分條件、必要條件的定義和橢圓的標椎方程,判斷可得出結(jié)論.【詳解】解:充分性:當,方程表示圓,充分性不成立;必要性:若方程表示橢圓,則,必有且,必要性成立,因此,“且”是“方程表示橢圓”的必要不充分條件.故選:B.4、C【解析】將拋物線方程化為標準方程,由此可拋物線的焦點坐標得選項.【詳解】解:將拋物線y=4x2的化為標準方程為x2=y(tǒng),p=,開口向上,焦點在y軸的正半軸上,故焦點坐標為(0,).故選:C5、B【解析】利用等差數(shù)列的性質(zhì)求解即可.【詳解】解:由等差數(shù)列的性質(zhì)得.故選:B6、A【解析】由等比數(shù)列的定義先求出公比,然后可解..【詳解】,得故選:A7、B【解析】由已知條件可得數(shù)列為首項為2,公差為2的等差數(shù)列,然后根據(jù)結(jié)合等差數(shù)列的求和公式可求得答案【詳解】在等式中,令,可得,所以數(shù)列為首項為2,公差為2的等差數(shù)列,因為,所以,化簡得,,解得或(舍去),故選:B8、B【解析】設(shè),,則由題意可得,代入圓方程中化簡可得曲線C的方程,從而可求出離心率【詳解】設(shè),,則,得,所以,因為點在圓上,所以,即,所以點的軌跡方程為,所以,則所以離心率為,故選:B9、B【解析】設(shè),,根據(jù)向量的數(shù)量積得到,與橢圓方程聯(lián)立,即可得到答案;【詳解】設(shè),,,與橢圓聯(lián)立,解得:,故選:B10、B【解析】求出圓心到直線距離,減去半徑即為答案.【詳解】圓心到直線的距離,則從村莊外圍到小路的最短距離為故選:B11、D【解析】作出正的實際圖形和直觀圖,計算出直觀圖的底邊上的高,由此可求得的面積.【詳解】如圖①②所示的實際圖形和直觀圖.由斜二測畫法可知,,,在圖②中作于,則.所以.故選:D.【點睛】本題考查直觀圖面積的計算,考查計算能力,屬于基礎(chǔ)題.12、D【解析】過作準線的垂線,垂足為,則,當且僅當三點共線時等號成立,此時,故,所以,選D二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】由求導公式求出導數(shù),再把代入求出切線的斜率,代入點式方程化為一般式即可.【詳解】由題意得,∴在點處的切線的斜率是,則在點處的切線方程是,即.【點睛】本題考查導數(shù)的幾何意義.注意區(qū)分“在某點處的切線”與“過某點的切線”,前者“某點”是切點,后者“某點”不一定是切點.14、①.②.【解析】根據(jù)直線l經(jīng)過A(2,1),B(1,)兩點,利用斜率公式,結(jié)合二次函數(shù)性質(zhì)求解;設(shè)其傾斜角為,,利用正切函數(shù)的性質(zhì)求解.【詳解】因為直線l經(jīng)過A(2,1),B(1,)兩點,所以l的斜率為,所以l的斜率取值范圍為,設(shè)其傾斜角為,,則,所以其傾斜角的取值范圍為,故答案為:,15、【解析】記“選中兩人都是男生”為事件,“選中兩人都是女生”為事件,“選中兩人中恰有一人是女生”為事件,根據(jù)為互斥事件,與為對立事件,從而可求出答案.【詳解】記“選中兩人都是男生”為事件,“選中兩人都是女生”為事件,“選中兩人中恰有一人是女生”為事件,易知為互斥事件,與為對立事件,又,所以.故答案為:.16、7【解析】根據(jù)遞推公式,依次求得值.【詳解】依題意,由,可知,故答案為:7三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)雙曲線漸近線斜率、雙曲線過點可構(gòu)造方程求得,由此可得雙曲線方程;(2)由雙曲線方程可得焦點坐標,由此可得方程,與雙曲線方程聯(lián)立后,利用弦長公式可求得結(jié)果.【小問1詳解】由雙曲線方程知:漸近線斜率,又漸近線方程為,;雙曲線過點,;由得:,雙曲線的方程為:;【小問2詳解】由(1)得:雙曲線的焦點坐標為;若直線過雙曲線的左焦點,則,由得:;設(shè),,則,;由雙曲線對稱性可知:當過雙曲線右焦點時,;綜上所述:.18、(1)(2)證明見解析【解析】(1)設(shè)等比數(shù)列的公比為,根據(jù),求得的值,即可求得數(shù)列的通項公式;(2)由等比數(shù)列的求和公式求得,得到,,化簡得到,即可求解【小問1詳解】解:設(shè)等比數(shù)列的公比為,因為,所以,解得,所以,所以數(shù)列的通項公式【小問2詳解】解:由(1)可得,,,所以,所以,即,,成等差數(shù)列19、(1),(2)證明見解析【解析】(1)根據(jù)點到焦點的距離等于5,利用拋物線的定義求得p,進而得到拋物線方程,然后將點代入拋物線求解;(2)方法一:設(shè)直線方程為:,與拋物線方程聯(lián)立,結(jié)合韋達定理,利用數(shù)量積的運算求解;方法二:根據(jù)直線過點,分直線的斜率不存在時,檢驗即可;當直線的斜率存在時,設(shè)直線方程為:,與拋物線方程聯(lián)立,結(jié)合韋達定理,利用向量的數(shù)量積運算求解.【小問1詳解】解:∵拋物線焦點在軸上,且過點,∴設(shè)拋物線方程為,由拋物線定義知,點到焦點的距離等于5,即點到準線的距離等于5,則,,∴拋物線方程為,又點在拋物線上,,,∴所求拋物線方程為,.【小問2詳解】方法一:由于直線過點,可設(shè)直線方程為:,由得,設(shè),,則,,所以,即為定值;方法二:由于直線過點,①當直線的斜率不存在時,易得直線的方程為,則由可得,,,所以;②當直線的斜率存在時可設(shè)直線方程為:,由得,設(shè),,則,.所以,即為定值.綜上,為定值.20、(1)拋物線方程為,橢圓方程為(2)【解析】(1)由,可得,繼而可得,故,再利用離心率,以及,即得解;(2)設(shè)直線方程為,與拋物線聯(lián)立,,結(jié)合韋達定理可得,再與橢圓聯(lián)立,,韋達定理代入,結(jié)合均值不等式即得解【小問1詳解】由題意,解得:,故,,,,,所以拋物線方程為,橢圓方程為【小問2詳解】設(shè)直線方程為,由消去得,,設(shè),,則因,所以或(舍去),所以直線方程為由,消去得,設(shè),,則設(shè)直線與軸交點為,則所以令,則,所以,當且僅當時,即時,取最大值21、(1)(2)【解析】(1)直接利用等比數(shù)列的求和公式求解即可,(2)由已知條件結(jié)合等比數(shù)的性質(zhì)可得,從而可求得答案,或直接利用等比數(shù)列的求和公式化簡求解【小問1詳解】.【小問2詳解】方法1:.∴.方法2:,整理得:又22、(1)證明見解析(2)答案不唯一,見解析【解析】(1)利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度拖拉機租賃合同書包含農(nóng)機操作技能培訓3篇
- 2025年度貨運保險承運合同范本2篇
- 二零二五年度房屋買賣合同解除后的產(chǎn)權(quán)登記協(xié)議3篇
- 2024版運輸工程居間合同范本
- 2025年度租賃經(jīng)營性房屋裝修設(shè)計合同3篇
- 2025年度快遞公司勞動合同(含員工權(quán)益保障與績效考核)3篇
- 2025年度房屋租賃安全責任險投保協(xié)議合同模板3篇
- 二零二五年度辦公家具采購與企業(yè)文化融合合同2篇
- 二零二五年度金融業(yè)務(wù)承攬合同增值稅發(fā)票開具標準及稅率協(xié)議3篇
- 2024年設(shè)備采購合同標的及服務(wù)內(nèi)容
- 買賣合同糾紛案民事判決書
- 神經(jīng)內(nèi)科應急預案完整版
- 2023零售藥店醫(yī)保培訓試題及答案篇
- UCC3895芯片內(nèi)部原理解析
- 混凝土設(shè)計的各種表格
- 保安員培訓教學大綱
- 廣東省高等學校“千百十工程”第六批繼續(xù)培養(yǎng)對象和第
- 【企業(yè)杜邦分析國內(nèi)外文獻綜述6000字】
- taft波完整版可編輯
- 2023-2024學年浙江省富陽市小學數(shù)學五年級上冊期末通關(guān)試題
- TTAF 092-2022 移動終端融合快速充電測試方法
評論
0/150
提交評論