西藏日喀則市南木林高級(jí)中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第1頁
西藏日喀則市南木林高級(jí)中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第2頁
西藏日喀則市南木林高級(jí)中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第3頁
西藏日喀則市南木林高級(jí)中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第4頁
西藏日喀則市南木林高級(jí)中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

西藏日喀則市南木林高級(jí)中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若平面的一個(gè)法向量為,點(diǎn),,,,到平面的距離為()A.1 B.2C.3 D.42.若函數(shù),滿足且,則()A.1 B.2C.3 D.43.若圓與圓相外切,則的值為()A. B.C.1 D.4.已知向量分別是直線的方向向量,若,則()A. B.C. D.5.設(shè)雙曲線的左、右頂點(diǎn)分別為、,左、右焦點(diǎn)分別為、,以為直徑的圓與雙曲線左支的一個(gè)交點(diǎn)為若以為直徑的圓與直線相切,則的面積為()A. B.C. D.6.已知數(shù)列為等差數(shù)列,若,則()A.1 B.2C.3 D.47.在四面體中,,,,且,,則等于()A. B.C. D.8.已知等比數(shù)列的各項(xiàng)均為正數(shù),且,則()A. B.C. D.9.若數(shù)列1,a,b,c,9是等比數(shù)列,則實(shí)數(shù)b的值為()A.5 B.C.3 D.3或10.直線的傾斜角為()A.30° B.60°C.90° D.120°11.為了解青少年視力情況,統(tǒng)計(jì)得到名青少年的視力測量值(五分記錄法)的莖葉圖,其中莖表示個(gè)位數(shù),葉表示十分位數(shù),則該組數(shù)據(jù)的中位數(shù)是()A. B.C. D.12.已知數(shù)列滿足,令是數(shù)列的前n項(xiàng)積,,現(xiàn)給出下列四個(gè)結(jié)論:①;②為單調(diào)遞增的等比數(shù)列;③當(dāng)時(shí),取得最大值;④當(dāng)時(shí),取得最大值其中所有正確結(jié)論的編號(hào)為()A.②④ B.①③C.②③④ D.①③④二、填空題:本題共4小題,每小題5分,共20分。13.如圖,正方體的棱長為1,P為BC的中點(diǎn),Q為線段上的動(dòng)點(diǎn),過點(diǎn)A,P,Q的平面截該正方體所得的截面記為S.則下列命題正確的是_________(寫出所有正確命題的編號(hào)).①當(dāng)時(shí),S為四邊形;②當(dāng)時(shí),S為等腰梯形;③當(dāng)時(shí),S與的交點(diǎn)R滿足;④當(dāng)時(shí),S為六邊形;⑤當(dāng)時(shí),S的面積為.14.已知P是橢圓的上頂點(diǎn),過原點(diǎn)的直線l交C于A,B兩點(diǎn),若的面積為,則l的斜率為____________15.已知向量、滿足,,且,則與的夾角為___________.16.在正項(xiàng)等比數(shù)列中,,,則的公比為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知O為坐標(biāo)原點(diǎn),點(diǎn),設(shè)動(dòng)點(diǎn)W到直線的距離為d,且,.(1)記動(dòng)點(diǎn)W的軌跡為曲線C,求曲線C的方程;(2)若直線l與曲線C交于A,B兩點(diǎn),直線與曲線C交于,兩點(diǎn),直線l與的交點(diǎn)為P(P不在曲線C上),且,設(shè)直線l,的斜率分別為k,.求證:為定值.18.(12分)如圖,在四棱錐中,側(cè)面底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中,,,(1)求證:平面ACF;(2)在線段PB上是否存在一點(diǎn)H,使得CH與平面ACF所成角的正弦值為?若存在,求出線段PH的長度;若不存在,請(qǐng)說明理由19.(12分)設(shè)分別為橢圓的左右焦點(diǎn),過的直線l與橢圓C相交于A,B兩點(diǎn),直線的傾斜角為60度,到直線l的距離為(1)求橢圓C的焦距;(2)如果,求橢圓C的方程20.(12分)已知橢圓的離心率為,且經(jīng)過點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知,經(jīng)過點(diǎn)的直線與橢圓交于、兩點(diǎn),若原點(diǎn)到直線的距離為,且,求直線的方程.21.(12分)在三棱錐A—BCD中,已知CB=CD=,BD=2,O為BD的中點(diǎn),AO⊥平面BCD,AO=2,E為AC的中點(diǎn)(1)求直線AB與DE所成角的余弦值;(2)若點(diǎn)F在BC上,滿足BF=BC,設(shè)二面角F—DE—C的大小為θ,求sinθ的值22.(10分)如圖,在四棱錐中,底面,,是的中點(diǎn),,.(1)證明:;(2)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】求出,點(diǎn)A到平面的距離:,由此能求出結(jié)果【詳解】解:,,,,∴為平面的一條斜線,且∴點(diǎn)到平面的距離:故選:B.2、C【解析】先取,得與之間的關(guān)系,然后根據(jù)導(dǎo)數(shù)的運(yùn)算直接求導(dǎo),代值可得.【詳解】取,則有,即,又因?yàn)樗?,所以,所?故選:C3、D【解析】確定出兩圓的圓心和半徑,然后由兩圓的位置關(guān)系建立方程求解即可.【詳解】由可得,所以圓的圓心為,半徑為,由可得,所以圓的圓心為,半徑為,因?yàn)閮蓤A相外切,所以,解得,故選:D4、C【解析】由題意,得,由此可求出答案【詳解】解:∵,且分別是直線的方向向量,∴,∴,∴,故選:C【點(diǎn)睛】本題主要考查向量共線的坐標(biāo)表示,屬于基礎(chǔ)題5、C【解析】據(jù)三角形中位線可得;再由雙曲線的定義求出,進(jìn)而求出的面積【詳解】雙曲線的方程為:,,設(shè)以為直徑的圓與直線相切與點(diǎn),則,且,,∥.又為的中點(diǎn),,又,,的面積為:.故選:C6、D【解析】利用等差數(shù)列下標(biāo)和的性質(zhì)求值即可.【詳解】由等差數(shù)列下標(biāo)和性質(zhì)知:.故選:D7、B【解析】根據(jù)空間向量的線性運(yùn)算即可求解.【詳解】解:由題知,故選:B.8、B【解析】利用對(duì)數(shù)的運(yùn)算性質(zhì),結(jié)合等比數(shù)列的性質(zhì)可求得結(jié)果.【詳解】是各項(xiàng)均為正數(shù)的等比數(shù)列,,,,.故選:B9、C【解析】根據(jù)等比數(shù)列的定義,利用等比數(shù)列的通項(xiàng)公式求解【詳解】解:設(shè)該等比數(shù)列公比為q,∵數(shù)列1,a,b,c,9是等比數(shù)列,∴,,∴,故,解得,∴故選:C10、B【解析】根據(jù)給定方程求出直線斜率,再利用斜率的定義列式計(jì)算得解.【詳解】直線的斜率,設(shè)其傾斜角為,顯然,則有,解得,直線的傾斜角為.故選:B11、B【解析】將樣本中的數(shù)據(jù)由小到大進(jìn)行排列,利用中位數(shù)的定義可得結(jié)果.【詳解】將樣本中的數(shù)據(jù)由小到大進(jìn)行排列,依次為:、、、、、、、、、,因此,這組數(shù)據(jù)的中位數(shù)為.故選:B.12、B【解析】求出,即可判斷選項(xiàng)①正確;求出,即可選項(xiàng)②錯(cuò)誤;求出,利用單調(diào)性即可判斷選項(xiàng)③正確;求出,即可判斷選項(xiàng)④錯(cuò)誤,即得解.【詳解】解:因?yàn)?,①所以,,②①②得,,整理得,又,滿足上式,所以,因?yàn)椋詳?shù)列為等差數(shù)列,公差為,所以,故①正確;,因?yàn)?,故?shù)列為等比數(shù)列,其中首項(xiàng),公比為的等比數(shù)列,因?yàn)?,,所以?shù)列為遞減的等比數(shù)列,故②錯(cuò)誤;,因?yàn)闉閱握{(diào)遞增函數(shù),所以當(dāng)最大時(shí),有最大值,因?yàn)?,所以時(shí),最大,即時(shí),取得最大值,故③正確;設(shè),由可得,,解得或,又因?yàn)?,所以時(shí),取得最大值,故④錯(cuò)誤;故選:B二、填空題:本題共4小題,每小題5分,共20分。13、①②③⑤【解析】①由如圖當(dāng)點(diǎn)向移動(dòng)時(shí),滿足,只需在上取點(diǎn)滿足,即可得截面為四邊形,如圖所示,是四邊形,故①正確;②當(dāng)時(shí),即為中點(diǎn),此時(shí)可得PQ∥AD,AP=QD==,故可得截面APQD為等腰梯形,等腰梯形,故②正確;③當(dāng)時(shí),如圖,延長至,使,連接交于,連接交于,連接,可證,由∽,可得,故可得,故③正確;④由③可知當(dāng)時(shí),只需點(diǎn)上移即可,此時(shí)的截面形狀仍然如圖所示的,如圖是五邊形,故④不正確;⑤當(dāng)時(shí),與重合,取的中點(diǎn),連接,可證,且,可知截面為為菱形,故其面積為,如圖是菱形,面積為,故⑤正確,故答案為①②③⑤考點(diǎn):正方體的性質(zhì).14、【解析】設(shè)出直線AB的方程,聯(lián)立橢圓方程得到A點(diǎn)橫坐標(biāo)滿足,再利用,解方程即可得到答案.【詳解】設(shè)直線AB的方程為:,,由,得,所以,又所以,解得.故答案為:15、##【解析】根據(jù)向量數(shù)量積的計(jì)算公式即可計(jì)算.【詳解】,,.故答案為:﹒16、3【解析】由題設(shè)知等比數(shù)列公比,根據(jù)已知條件及等比數(shù)列通項(xiàng)公式列方程求公比即可.【詳解】由題設(shè),等比數(shù)列公比,且,所以,可得或(舍),故公比為3.故答案為:3三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)設(shè)點(diǎn),由即所以化簡即可得到答案.(2)設(shè),,設(shè)直線l的方程為:與(1)中W的軌跡方程聯(lián)立,得出韋達(dá)定理,求出,同理設(shè)直線的方程為:,得出,再根據(jù)從而可證明結(jié)論.【小問1詳解】設(shè)點(diǎn),因?yàn)?,所以,因?yàn)?,所以所以所以所以所以C的方程為:【小問2詳解】設(shè),,設(shè)直線l的方程為:,則由得:所以,,所以所以設(shè)直線的方程為:,則同理可得因所以即,即,即解得,即所以為定值.18、(1)證明見解析(2)存在,的長為或,理由見解析.【解析】(1)建立空間直角坐標(biāo)系,利用向量法證得平面.(2)設(shè),求出,根據(jù)與平面所成角的正弦值列方程,由此求得,進(jìn)而求得的長.小問1詳解】依題意,在四棱錐中,側(cè)面底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中,,,,以為空間坐標(biāo)原點(diǎn)建立如圖所示空間直角坐標(biāo)系,,,設(shè)平面法向量為,則,故可設(shè),由于,所以平面.【小問2詳解】存在,理由如下:設(shè),,,,依題意與平面所成角的正弦值為,即,,解得或.,即的長為或,使與平面所成角的正弦值為.19、(1)(2)【解析】(1)求得直線的方程,利用點(diǎn)到直線的距離列方程,由此求得,進(jìn)而求得焦距.(2)聯(lián)立直線的方程和橢圓方程,化簡寫出根與系數(shù)關(guān)系,結(jié)合來求得,從而求得橢圓的方程.【小問1詳解】依題意,直線的方程為,到的距離為,所以焦距.【小問2詳解】由,消去并化簡得,設(shè),則,,,,,所以,,,,,,,,,所以,所以橢圓的方程為.20、(1);(2).【解析】(1)由已知條件可得出關(guān)于、、的方程組,求出這三個(gè)量的值,由此可得出橢圓的標(biāo)準(zhǔn)方程;(2)分析可知直線的斜率存在且不為零,設(shè)直線的方程為,由點(diǎn)到直線的距離公式可得出,設(shè)點(diǎn)、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由可得出,代入韋達(dá)定理求出、的值,由此可得出直線的方程.【詳解】(1)設(shè)橢圓的焦距為,則,解得,因此,橢圓的標(biāo)準(zhǔn)方程為;(2)若直線斜率不存在,則直線過原點(diǎn),不合乎題意.所以,直線的斜率存在,設(shè)斜率為,設(shè)直線方程為,設(shè)、,原點(diǎn)到直線的距離為,,即①.聯(lián)立直線與橢圓方程可得,則,則,由韋達(dá)定理可得,.,則為線段的中點(diǎn),所以,,,得,,所以,,整理可得,解得,即,,因此,直線的方程為或.【點(diǎn)睛】方法點(diǎn)睛:利用韋達(dá)定理法解決直線與圓錐曲線相交問題的基本步驟如下:(1)設(shè)直線方程,設(shè)交點(diǎn)坐標(biāo)為、;(2)聯(lián)立直線與圓錐曲線的方程,得到關(guān)于(或)的一元二次方程,必要時(shí)計(jì)算;(3)列出韋達(dá)定理;(4)將所求問題或題中的關(guān)系轉(zhuǎn)化為、的形式;(5)代入韋達(dá)定理求解.21、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,利用向量數(shù)量積求直線向量夾角,即得結(jié)果;(2)先求兩個(gè)平面法向量,根據(jù)向量數(shù)量積求法向量夾角,最后根據(jù)二面角與向量夾角關(guān)系得結(jié)果.【詳解】(1)連以為軸建立空間直角坐標(biāo)系,則從而直線與所成角的余弦值為(2)設(shè)平面一個(gè)法向量為令設(shè)平面一個(gè)法向量為令因此【點(diǎn)睛】本題考查利用向量求線線角與二面角,考查基本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論