浙江省武義第三中學2025屆高二上數學期末教學質量檢測試題含解析_第1頁
浙江省武義第三中學2025屆高二上數學期末教學質量檢測試題含解析_第2頁
浙江省武義第三中學2025屆高二上數學期末教學質量檢測試題含解析_第3頁
浙江省武義第三中學2025屆高二上數學期末教學質量檢測試題含解析_第4頁
浙江省武義第三中學2025屆高二上數學期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省武義第三中學2025屆高二上數學期末教學質量檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,直三棱柱中,,,分別是,的中點,,則與所成角的余弦值為()A. B.C. D.2.如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A,B,交其準線于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為()A.y2=9x B.y2=6xC.y2=3x D.y2=x3.函數在處有極小值5,則()A. B.C.或 D.或34.已知是空間的一個基底,若,,若,則()A. B.C.3 D.5.已知實數成等比數列,則圓錐曲線的離心率為()A. B.2C.或2 D.或6.現有60瓶飲料,編號從1到60,若用系統抽樣的方法從中抽取6瓶進行檢驗,則所抽取的編號可能為()A.3,13,23,33,43,53 B.2,14,26,38,40,52C.5,8,31,36,48,54 D.5,10,15,20,25,307.“楊輝三角”是中國古代重要的數學成就,它比西方的“帕斯卡三角形”早了300多年,如圖是由“楊輝三角”拓展而成的三角形數陣,記為圖中虛線上的數1,3,6,10,…構成的數列的第n項,則的值為()A.1225 B.1275C.1326 D.13628.已知直線,若圓C的圓心在軸上,且圓C與直線都相切,求圓C的半徑()A. B.C.或 D.9.方程表示的圖形是A.兩個半圓 B.兩個圓C.圓 D.半圓10.當圓的圓心到直線的距離最大時,()A B.C. D.11.某工廠對一批產品進行了抽樣檢測.右圖是根據抽樣檢測后的產品凈重(單位:克)數據繪制的頻率分布直方圖,其中產品凈重的范圍是[96,106],樣本數據分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產品凈重小于100克的個數是36,則樣本中凈重大于或等于98克并且小于104克的產品的個數是.A.90 B.75C.60 D.4512.已知命題:,;命題:,.則下列命題中為真命題的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知四面體中,,分別在,上,且,,若,則________.14.正三棱柱的底面邊長和高均為2,點為側棱的中點,連接,,則點到平面的距離為______.15.總書記在“十九大”報告中指出:堅定文化自信,推動中華優(yōu)秀傳統文化創(chuàng)造性轉化.“楊輝三角”揭示了二項式系數在三角形中的一種幾何排列規(guī)律,最早在中國南宋數學家楊輝1261年所著的《詳解九章算法》一書中出現,歐洲數學家帕斯卡在1654年才發(fā)現這一規(guī)律,比楊輝要晚近四百年.“楊輝三角”是中國數學史上的一個偉大成就,激發(fā)起一批又一批數學愛好者的探究欲望.如圖所示,在由二項式系數所構成的“楊輝三角中,第10行第8個數是______16.已知數列滿足,,則使得成立的n的最小值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)現將兩個班的藝術類考生報名表分別裝進2個檔案袋,第一個檔案袋內有6名男生和4名女生的報名表,第二個檔案袋內有5名男生和5名女生的報名表.隨機選擇一個檔案袋,然后從中隨機抽取2份報名表(1)若選擇的是第一個檔案袋,求從中抽到兩名男生報名表的概率;(2)求抽取的報名表是一名男生一名女生的概率18.(12分)設拋物線的焦點為,點在拋物線上,且,橢圓右焦點也為,離心率為(1)求拋物線方程和橢圓方程;(2)若不經過的直線與拋物線交于、兩點,且(為坐標原點),直線與橢圓交于、兩點,求面積的最大值19.(12分)已知點為拋物線的焦點,點在拋物線上,的面積為1.(1)求拋物線的標準方程;(2)設點是拋物線上異于點的一點,直線與直線交于點,過作軸的垂線交拋物線于點,求證:直線過定點.20.(12分)在①,②,③這三個條件中任選一個補充在下面問題中,并解答下列題目設首項為2的數列的前n項和為,前n項積為,且(1)求數列的通項公式;(2)求的值21.(12分)如圖,在三棱柱中,平面ABC,,,,點D,E分別在棱和棱上,且,,M為棱的中點(1)求證:;(2)求直線AB與平面所成角的正弦值22.(10分)已知拋物線的焦點F到準線的距離為2(1)求C的方程;(2)已知O為坐標原點,點P在C上,點Q滿足,求直線斜率最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】取的中點為,的中點為,然后可得或其補角即為與所成角,然后在中求出答案即可.【詳解】取的中點為,的中點為,,,所以或其補角即為與所成角,設,則,,在,,故選:A2、C【解析】過點A,B分別作準線的垂線,交準線于點E,D,設|BF|=a,利用拋物線的定義和平行線的性質、直角三角形求解【詳解】如圖,過點A,B分別作準線的垂線,交準線于點E,D,設|BF|=a,則由已知得|BC|=2a,由拋物線定義得|BD|=a,故∠BCD=30°,在直角三角形ACE中,因為|AE|=|AF|=3,|AC|=3+3a,2|AE|=|AC|,所以3+3a=6,從而得a=1,|FC|=3a=3,所以p=|FG|=|FC|=,因此拋物線的方程為y2=3x,故選:C.3、A【解析】由題意條件和,可建立一個關于的方程組,解出的值,然后再將帶入到中去驗證其是否滿足在處有極小值,排除增根,即可得到答案.【詳解】由題意可得,則,解得,或.當,時,.由,得;由,得.則在上單調遞增,在上單調遞減,故在處有極大值5,不符合題意.當,時,.由,得;由,得.則在上單調遞減,在上單調遞增,故在處有極小值5,符合題意,從而故選:A.4、C【解析】由,可得存在實數,使,然后將代入化簡可求得結果【詳解】,,因,所以存在實數,使,所以,所以,所以,得,,所以,故選:C5、C【解析】根據成等比數列求得,再根據離心率計算公式即可求得結果.【詳解】因為實數成等比數列,故可得,解得或;當時,表示焦點在軸上的橢圓,此時;當時,表示焦點在軸上的雙曲線,此時.故選:C.6、A【解析】求得組距,由此確定正確選項.【詳解】,即組距為,A選項符合,其它選項不符合.故選:A7、B【解析】觀察前4項可得,從而可求得結果【詳解】由題意可得,……,觀察規(guī)律可得,所以,故選:B8、C【解析】設出圓心坐標,利用圓心到直線的距離相等列方程,求得圓心坐標并求得圓的半徑.【詳解】設圓心坐標為,則或,所以圓的半徑為或.故選:C9、D【解析】其中,再兩邊同時平方,由此確定圖形【詳解】根據題意,,再兩邊同時平方,由此確定圖形為半圓.故選:D【點睛】幾何圖像中要注意與方程式是一一對應,故方程的中未知數的的取值范圍對應到圖形中的坐標的取值范圍10、C【解析】求出圓心坐標和直線過定點,當圓心和定點的連線與直線垂直時滿足題意,再利用兩直線垂直,斜率乘積為-1求解即可.【詳解】解:因為圓的圓心為,半徑,又因為直線過定點A(-1,1),故當與直線垂直時,圓心到直線的距離最大,此時有,即,解得.故選:C.11、A【解析】樣本中產品凈重小于100克的頻率為(0.050+0.100)×2=0.3,頻數為36,∴樣本總數為.∵樣本中凈重大于或等于98克并且小于104克的產品的頻率為(0.100+0.150+0.125)×2=0.75,∴樣本中凈重大于或等于98克并且小于104克的產品的個數為120×0.75=90.考點:頻率分布直方圖.12、C【解析】利用基本不等式判斷命題的真假,由不等式性質判斷命題的真假,進而確定它們所構成的復合命題的真假即可.【詳解】由,當且僅當時等號成立,故不存在使,所以命題為假命題,而命題為真命題,則為真,為假,故為假,為假,為真,為假.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】連接,根據題意,結合空間向量加減法運算求解即可.【詳解】解:連接∵四面體中,,分別在,上,且,∴∴∴.故答案為:14、【解析】建立空間直角坐標系,利用空間向量求點面距離的公式可以直接求出.【詳解】如圖,建立空間直角坐標系,為的中點,由已知,,,,,所以,,設平面的法向量為,,即:,取,得,,則點到平面的距離為.故答案為:.15、120【解析】根據二項式的展開式系數的相關知識即可求解.【詳解】因為,二項式展開式第項的系數為,所以,第10行第8個數是.故答案為:12016、11【解析】由題設可得,結合等比數列的定義知從第二項開始是公比為2的等比數列,進而寫出的通項公式,即可求使成立的最小值n.【詳解】因為,所以,兩式相除得,整理得.因為,故從第二項開始是等比數列,且公比為2,因為,則,所以,則,由得:,故故答案為:11.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)選擇的是第一個檔案袋,從中隨機抽取2份報名表,基本事件總數,從中抽到兩名男生報名表包含的基本事件個數為,由此能求出從中抽到兩名男生報名表的概率;(2)設事件表示抽取到第個檔案袋,,設事件表示抽取的報名表是一名男生一名女生,利用全概率公式能求出抽取的報名表是一名男生一名女生的概率【小問1詳解】(1)第一個檔案袋內有6名男生和4名女生的報名表,選擇的是第一個檔案袋,從中隨機抽取2份報名表,基本事件總數,從中抽到兩名男生報名表包含的基本事件個數為,從中抽到兩名男生報名表的概率【小問2詳解】設事件表示抽取到第個檔案袋,,設事件表示抽取的報名表是一名男生一名女生,則,,,,抽取的報名表是一名男生一名女生的概率為:18、(1)拋物線方程為,橢圓方程為(2)【解析】(1)由,可得,繼而可得,故,再利用離心率,以及,即得解;(2)設直線方程為,與拋物線聯立,,結合韋達定理可得,再與橢圓聯立,,韋達定理代入,結合均值不等式即得解【小問1詳解】由題意,解得:,故,,,,,所以拋物線方程為,橢圓方程為【小問2詳解】設直線方程為,由消去得,,設,,則因,所以或(舍去),所以直線方程為由,消去得,設,,則設直線與軸交點為,則所以令,則,所以,當且僅當時,即時,取最大值19、(1)(2)證明見解析【解析】(1)由條件列方程求,由此可得拋物線方程;(2)方法一:聯立直線與拋物線方程,結合條件三點共線,可證明直線過定點,方法二:聯立直線與拋物線方程,聯立直線與直線求,由垂直與軸列方程化簡,可證明直線過定點.【小問1詳解】因為點在拋物線上,所以,即,,因為,故解得,拋物線的標準方程為【小問2詳解】設直線的方程為,由,得,所以,由(1)可知當時,,此時直線的方程為,若時,因為三點共線,所以,即,又因為,,化簡可得,又,進而可得,整理得,因為所以,此時直線的方程為,直線恒過定點又直線也過點,綜上:直線過定點解法二:設方程,得若直線斜率存在時斜率方程為即解得:,于是有整理得.(*)代入上式可得所以直線方程為直線過定點.若直線斜率不存在時,直線方程為所以P點坐標為,M點坐標為此時直線方程為過點綜上:直線過定點.【點睛】解決直線與拋物線的綜合問題時,要注意:(1)注意觀察應用題設中的每一個條件,明確確定直線、拋物線的條件;(2)強化有關直線與拋物線聯立得出一元二次方程后的運算能力,重視根與系數之間的關系、弦長、斜率、三角形的面積等問題20、(1)(2)【解析】(1)若選①可得,從而得到,即可得到是常數列,即可求出數列的通項公式;若選②,根據,作差即可得到,再利用累乘法計算可得;若選③:可得,即可得到數列是等差數列,首項為2,公差為1,從而求出數列的通項公式;(2)由(1)可得,利用裂項相消法計算可得;【小問1詳解】解:選①:∵即∴即∴數列是常數列∴∴選②:∵∴時,則即∴∴當時,也滿足,∴選③:因為,所以,所以數列是等差數列,首項為2,公差為1則∴【小問2詳解】解:由(1)可得,∴21、(1)證明見解析;(2)【解析】(1)由線面垂直、等腰三角形的性質易得、,再根據線面垂直的判定及性質證明結論;(2)構建空間直角坐標系,確定相關點坐標,進而求的方向向量、面的法向量,應用空間向量夾角的坐標表示求直線與平面所成角的正弦值.【小問1詳解】在三棱柱中,平面,則平面,由平面,則,,則,又為的中點,則,又,則平面,由平面,因此,.【小問2詳解】以為原點,以,,為軸、軸、軸的正方向建立空間直角坐標系,如圖所示,可得:,,,,,,.∴,,,,設為面的法向量,則,令得,設與平面所成角為,則,∴直線與平面所成角的正弦值為.22、(1);(2)最大值為.【解析】(1)由拋物線焦點與準線的距離即可得解;(2)設,由平面向量的知識可得,進而可得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論