陜西省咸陽市禮泉縣2025屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第1頁
陜西省咸陽市禮泉縣2025屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第2頁
陜西省咸陽市禮泉縣2025屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第3頁
陜西省咸陽市禮泉縣2025屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第4頁
陜西省咸陽市禮泉縣2025屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

陜西省咸陽市禮泉縣2025屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.,則與分別為()A.與 B.與C.與0 D.0與2.德國數(shù)學(xué)家高斯是近代數(shù)學(xué)奠基者之一,有“數(shù)學(xué)王子”之稱,在歷史上有很大的影響.他幼年時就表現(xiàn)出超人的數(shù)學(xué)天才,10歲時,他在進行的求和運算時,就提出了倒序相加法的原理,該原理基于所給數(shù)據(jù)前后對應(yīng)項的和呈現(xiàn)一定的規(guī)律生成,因此,此方法也稱之為高斯算法.已知數(shù)列,則()A.96 B.97C.98 D.993.在中,已知點在線段上,點是的中點,,,,則的最小值為()A. B.4C. D.4.正方體的棱長為,為側(cè)面內(nèi)動點,且滿足,則△面積的最小值為()A. B.C. D.5.如圖,在四面體OABC中,,,,點在線段上,且,為的中點,則等于()A. B.C. D.6.曲線y=x3+11在點P(1,12)處的切線與y軸交點的縱坐標(biāo)是()A.﹣9 B.﹣3C.9 D.157.已知函數(shù)只有一個零點,則實數(shù)的取值范圍是()A B.C. D.8.已知雙曲線C:(a>0,b>0),斜率為的直線與雙曲線交于不同的兩點,且線段的中點為P(2,4),則雙曲線的漸近線方程為()A. B.C. D.9.已知函數(shù)的部分圖象如圖所示,且經(jīng)過點,則()A.關(guān)于點對稱B.關(guān)于直線對稱C.為奇函數(shù)D.為偶函數(shù)10.設(shè)是等比數(shù)列,且,,則()A.12 B.24C.30 D.3211.在直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.12.設(shè)函數(shù),則下列函數(shù)中為奇函數(shù)的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)O為坐標(biāo)原點,拋物線的焦點為F,P為拋物線上一點,若,則的面積為____________14.已知實數(shù)滿足,則的取值范圍是____________15.已知,是橢圓:的兩個焦點,點在上,則的最大值為________16.設(shè)有下列命題:①當(dāng),時,不等式恒成立;②函數(shù)在上的最小值為2;③函數(shù)在上的最大值為;④若,,且,則的最小值為其中真命題為________________.(填寫所有真命題的序號)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面,底面為矩形,,,為的中點,.請用空間向量知識解答下列問題:(1)求線段的長;(2)若為線段上一點,且,求平面與平面夾角的余弦值.18.(12分)已知函數(shù)(1)求關(guān)于x的不等式的解集;(2)若對任意的,恒成立,求實數(shù)a的取值范圍19.(12分)已知直線l經(jīng)過兩條直線2x﹣y﹣3=0和4x﹣3y﹣5=0的交點,且與直線x+y﹣2=0垂直(1)求直線l的方程;(2)若圓C過點(1,0),且圓心在x軸的正半軸上,直線l被該圓所截得的弦長為,求圓C的標(biāo)準(zhǔn)方程20.(12分)已知橢圓C:過兩點(1)求C的方程;(2)定點M坐標(biāo)為,過C右焦點的直線與C交于P,Q兩點,判斷是否為定值?若是,求出該定值,若不是,請說明理由21.(12分)已知橢圓與橢圓有共同的焦點,且橢圓經(jīng)過點.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)為橢圓的左焦點,為橢圓上任意一點,為坐標(biāo)原點,求的最小值.22.(10分)已知數(shù)列的前n項和為,,且(1)求數(shù)列的通項公式;(2)令,記數(shù)列的前n項和為,求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用正弦函數(shù)和常數(shù)導(dǎo)數(shù)公式,結(jié)合代入法進行求解即可.【詳解】因為,所以,所以,,故選:C2、C【解析】令,利用倒序相加原理計算即可得出結(jié)果.【詳解】令,,兩式相加得:,∴,故選:C3、C【解析】利用三點共線可得,由,利用基本不等式即可求解.【詳解】由點是的中點,則,又因為點在線段上,則,所以,當(dāng)且僅當(dāng),時取等號,故選:C【點睛】本題考查了基本不等式求最值、平面向量共線的推論,考查了基本運算求解能力,屬于基礎(chǔ)題.4、B【解析】建立空間直角坐標(biāo)系如圖所示,設(shè)由,得出點的軌跡方程,由幾何性質(zhì)求得,再根據(jù)垂直關(guān)系求出△面積的最小值【詳解】以點為原點,分別為軸建立空間直角坐標(biāo)系,如圖所示:則,,設(shè)所以,得,所以因為平面,所以故△面積的最小值為故選:B5、D【解析】利用空間向量的加法與減法可得出關(guān)于、、的表達式.【詳解】.故選:D.6、C【解析】y′=3x2,則y′|x=1=3,所以曲線在P點處的切線方程為y-12=3(x-1)即y=3x+9,它在y軸上的截距為9.7、B【解析】將題目轉(zhuǎn)化為函數(shù)的圖像與的圖像只有一個交點,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,作出圖像,利用數(shù)形結(jié)合求出的取值范圍.【詳解】由函數(shù)只有一個零點,等價于函數(shù)的圖像與的圖像只有一個交點,,求導(dǎo),令,得當(dāng)時,,函數(shù)在上單調(diào)遞減;當(dāng)時,,函數(shù)在上單調(diào)遞增;當(dāng)時,,函數(shù)在上單調(diào)遞減;故當(dāng)時,函數(shù)取得極小值;當(dāng)時,函數(shù)取得極大值;作出函數(shù)圖像,如圖所示,由圖可知,實數(shù)的取值范圍是故選:B【點睛】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進而構(gòu)造兩個函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.8、C【解析】設(shè),代入雙曲線方程相減后可求得,從而得漸近線方程【詳解】設(shè),則,相減得,∴,又線段的中點為P(2,4),的斜率為1,∴,,∴漸近線方程為故選:C【點睛】方法點睛:本題考查求雙曲線的漸近線方程,已知弦的中點(或涉及到中點),可設(shè)弦兩端點的坐標(biāo),代入雙曲線方程后作差,作差后式子中有直線的斜率,弦中點坐標(biāo),有.這種方法叫點差法9、D【解析】根據(jù)圖象求得函數(shù)解析式,結(jié)合三角函數(shù)的圖象與性質(zhì),逐項判定,即可求解.【詳解】由題意,可得,根據(jù)圖形走勢,可得,解得,令,可得,所以,由,所以A不正確;由,可得不是函數(shù)的對稱軸,所以B不正確;由,此時函數(shù)為非奇非偶函數(shù),所以C不正確;由為偶函數(shù),所以D正確.故選:D.10、D【解析】根據(jù)已知條件求得的值,再由可求得結(jié)果.【詳解】設(shè)等比數(shù)列的公比為,則,,因此,.故選:D.【點睛】本題主要考查等比數(shù)列基本量的計算,屬于基礎(chǔ)題11、D【解析】以為坐標(biāo)原點,向量,,方向分別為、、軸建立空間直角坐標(biāo)系,利用空間向量夾角公式進行求解即可.【詳解】以為坐標(biāo)原點,向量,,方向分別為、、軸建立空間直角坐標(biāo)系,則,,,,所以,,,,,因此異面直線與所成角的余弦值等于.故選:D.12、A【解析】求出函數(shù)圖象的對稱中心,結(jié)合函數(shù)圖象平移變換可得結(jié)果.【詳解】因為,所以,,所以,函數(shù)圖象的對稱中心為,將函數(shù)的圖象向右平移個單位,再將所得圖象向下平移個單位長度,可得到奇函數(shù)的圖象,即函數(shù)為奇函數(shù).故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)拋物線定義求出點坐標(biāo),即可求出面積.【詳解】由題可得,設(shè),則由拋物線定義可得,解得,代入拋物線方程可得,所以.故答案為:.14、【解析】去絕對值分別列出每個象限解析式,數(shù)形結(jié)合利用距離求解范圍.【詳解】當(dāng),表示橢圓第一象限部分;當(dāng),表示雙曲線第四象限部分;當(dāng),表示雙曲線第二象限部分;當(dāng),不表示任何圖形;以及兩點,作出大致圖象如圖:曲線上的點到的距離為,根據(jù)雙曲線方程可得第二四象限雙曲線漸近線方程都是,與距離為2,曲線二四象限上的點到的距離為小于且無限接近2,考慮曲線第一象限的任意點設(shè)為到的距離,當(dāng)時取等號,所以,則的取值范圍是故答案為:15、9【解析】根據(jù)橢圓的定義可得,結(jié)合基本不等式即可求得的最大值.【詳解】∵在橢圓上∴∴根據(jù)基本不等式可得,即,當(dāng)且僅當(dāng)時取等號.故答案為:9.16、①③④【解析】①直接利用基本不等式判斷即可;②直接利用基本不等式以及等號成立的條件判斷即可;③分子、分母同除,利用基本不等式即可判斷;④設(shè),,利用指、對互化以及基本不等式即可判斷.【詳解】由于,,故恒成立,當(dāng)且僅當(dāng)時取等號,所以①正確;,當(dāng)且僅當(dāng),即時取等號,由于,所以②不正確;因為,所以,當(dāng)且僅當(dāng)時取等號,而,即函數(shù)的最大值為,所以③正確;設(shè),,則,,,,,所以,當(dāng)且僅當(dāng),時取等號,故的最小值為,所以④正確.故答案為:①③④【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),由已知可得出,求出的值,即可得解;(2)利用空間向量法可求得平面與平面夾角的余弦值.【小問1詳解】解:平面,,以點為坐標(biāo)原點,、、所在直線分別為、、軸建立如圖所示的空間直角坐標(biāo)系,設(shè),則、、、,則,,,則,解得,故.【小問2詳解】解:,則,又、、,所以,,,設(shè)為平面的法向量,則,取,可得,顯然,為平面的一個法向量,,因此,平面與平面夾角的余弦值為.18、(1)答案見解析(2)【解析】(1)求出對應(yīng)方程的根,再根據(jù)根的大小進行討論,即可得解;(2)對任意的,恒成立,即恒成立,結(jié)合基本不等式求出的最小值即可得解.【小問1詳解】解:由已知易得即為:,令可得與,所以,當(dāng)時,原不等式的解集為;當(dāng)時,原不等式的解集為;當(dāng)時,原不等式的解集為;【小問2詳解】解:由可得,由,得,所以可得,,當(dāng)且僅當(dāng),即時等號成立,所以,所以的取值范圍是.19、(1)(2)【解析】(1)先求得直線和直線的交點坐標(biāo),再用點斜式求得直線的方程.(2)設(shè)圓的標(biāo)準(zhǔn)方程為,根據(jù)已知條件列方程組,求得,由此求得圓的標(biāo)準(zhǔn)方程.【小問1詳解】.直線的斜率為,所以直線的斜率為,所以直線的方程為.【小問2詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,則,所以圓的標(biāo)準(zhǔn)方程為.20、(1);(2)為定值.【解析】(1)根據(jù)題意,列出的方程組,求解即可;(2)對直線的斜率是否存在進行討論,當(dāng)直線斜率存在時,設(shè)出直線的方程,聯(lián)立橢圓方程,利用韋達定理,轉(zhuǎn)化,求解即可.【小問1詳解】因為橢圓過兩點,故可得,解得,故橢圓方程為:.【小問2詳解】由(1)可得:,故橢圓的右焦點的坐標(biāo)為;當(dāng)直線的斜率不存在時,此時直線的方程為:,代入橢圓方程,可得,不妨取,又,故.當(dāng)直線的斜率存在時,設(shè)直線的方程為:,聯(lián)立橢圓方程,可得:,設(shè)坐標(biāo)為,故可得,則.綜上所述,為定值.【點睛】本題考察橢圓方程的求解,以及橢圓中的定值問題;處理問題的關(guān)鍵是合理的利用韋達定理,將目標(biāo)式進行轉(zhuǎn)化,屬中檔題.21、(1)(2)【解析】(1)設(shè)橢圓的方程為,將點的坐標(biāo)代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)設(shè)點,則,且,利用平面向量數(shù)量積的坐標(biāo)運算結(jié)合二次

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論