版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆安徽省部分省示范中學(xué)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在四棱錐中,四邊形為菱形,平面,是中點,下列敘述正確的是()A.平面 B.平面C.平面平面 D.平面平面2.如圖,在直三棱柱中,AB=BC,,若棱上存在唯一的一點P滿足,則()A. B.1C. D.23.雙曲線的焦距是()A.4 B.C.8 D.4.與向量平行,且經(jīng)過點的直線方程為()A. B.C. D.5.在中,,滿足條件的三角形的個數(shù)為()A.0 B.1C.2 D.無數(shù)多6.在各項均為正數(shù)的等比數(shù)列中,若,則()A.6 B.12C.56 D.787.在平面上給定相異兩點,設(shè)點在同一平面上且滿足,當(dāng)且時,點的軌跡是一個圓,這個軌跡最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),故我們稱這個圓為阿波羅尼斯圓.現(xiàn)有雙曲線,為雙曲線的左、右頂點,為雙曲線的虛軸端點,動點滿足,面積的最大值為,面積的最小值為,則雙曲線的離心率為()A. B.C. D.8.在中,角所對的邊分別為,,,則外接圓的面積是()A. B.C. D.9.若數(shù)列的前n項和(n∈N*),則=()A.20 B.30C.40 D.5010.窗花是貼在窗紙或窗戶玻璃上的剪紙,是古老的傳統(tǒng)民間藝術(shù)之一.如圖是一個窗花的圖案,以正六邊形各頂點為圓心、邊長為半徑作圓,陰影部分為其公共部分.現(xiàn)從該正六邊形中任取一點,則此點取自于陰影部分的概率為()A. B.C. D.11.2021年11月,鄭州二七罷工紀(jì)念塔入選全國職工愛國主義教育基地名單.某數(shù)學(xué)建模小組為測量塔的高度,獲得了以下數(shù)據(jù):甲同學(xué)在二七廣場A地測得紀(jì)念塔頂D的仰角為45°,乙同學(xué)在二七廣場B地測得紀(jì)念塔頂D的仰角為30°,塔底為C,(A,B,C在同一水平面上,平面ABC),測得,,則紀(jì)念塔的高CD為()A.40m B.63mC.m D.m12.設(shè)命題,,則為().A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的左、右焦點分別為,,為坐標(biāo)原點,則以下說法正確的是()A.過點的直線與橢圓交于,兩點,則的周長為8B.橢圓上存在點,使得C.橢圓的離心率為D.為橢圓上一點,為圓上一點,則點,的最大距離為314.已知曲線,則以下結(jié)論正確的是______.①曲線C關(guān)于點對稱;②曲線C關(guān)于y軸對稱;③曲線C被x軸所截得的弦長為2;④曲線C上的點到原點距離都不超過2.15.已知圓和直線.(1)求直線l所經(jīng)過的定點的坐標(biāo),并判斷直線與圓的位置關(guān)系;(2)求當(dāng)k取什么值,直線被圓截得的弦最短,并求這條最短弦的長.16.如圖,已知AB,CD分別是圓柱上、下底面圓的直徑,且,若該圓柱的底面圓直徑是其母線長的2倍,則異面直線AC與BD所成角的余弦值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點分別為,,且橢圓過點,離心率,為坐標(biāo)原點,過且不平行于坐標(biāo)軸的動直線與有兩個交點,,線段的中點為.(1)求的標(biāo)準(zhǔn)方程;(2)記直線斜率為,直線的斜率為,證明:為定值;(3)軸上是否存在點,使得為等邊三角形?若存在,求出點的坐標(biāo);若不存在,請說明理由.18.(12分)已知直線,拋物線.(1)與有公共點,求的取值范圍;(2)是坐標(biāo)原點,過的焦點且與交于兩點,求的面積.19.(12分)已知圓C的圓心在直線上,且經(jīng)過點和(1)求圓C的標(biāo)準(zhǔn)方程;(2)若過點的直線l與圓C交于A,B兩點,且,求直線l的方程20.(12分)已知拋物線的焦點為,點在拋物線上,且點的縱坐標(biāo)為4,(1)求拋物線的方程;(2)過點作直線交拋物線于兩點,試問拋物線上是否存在定點使得直線與的斜率互為倒數(shù)?若存在求出點的坐標(biāo),若不存在說明理由21.(12分)如圖,在四棱錐中,平面,底面為菱形,且,,分別為,的中點(Ⅰ)證明:平面;(Ⅱ)點在棱上,且,證明:平面22.(10分)已知數(shù)列滿足,.(1)證明:數(shù)列為等差數(shù)列.(2)求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用反證法可判斷A選項;利用面面垂直的性質(zhì)可判斷BC選項;利用面面垂直的判定可判斷D選項.【詳解】對于A選項,因為四邊形為菱形,則,平面,平面,平面,若平面,因為,則平面平面,事實上,平面與平面相交,假設(shè)不成立,A錯;對于B選項,過點在平面內(nèi)作,垂足為點,平面,平面,則,,,平面,而過作平面的垂線,有且只有一條,故與平面不垂直,B錯;對于C選項,過點在平面內(nèi)作,垂足為點,因為平面,平面,則,,,則平面,若平面平面,過點在平面內(nèi)作,垂足為點,因為平面平面,平面平面,平面,平面,而過點作平面的垂線,有且只有一條,即、重合,所以,平面平面,所以,,但四邊形為菱形,、不一定垂直,C錯;對于D選項,因為四邊形為菱形,則,平面,平面,,,平面,因為平面,因此,平面平面平面,D對.故選:D.2、D【解析】設(shè),構(gòu)建空間直角坐標(biāo)系,令且,求出,,再由向量垂直的坐標(biāo)表示列方程,結(jié)合點P的唯一性有求參數(shù)a,即可得結(jié)果.【詳解】由題設(shè),構(gòu)建如下圖空間直角坐標(biāo)系,若,則,,且,所以,,又存在唯一的一點P滿足,所以,則,故,可得,此時,所以.故選:D3、C【解析】根據(jù),先求半焦距,再求焦距即可.【詳解】解:由題意可得,,∴,故選:C【點睛】考查求雙曲線的焦距,基礎(chǔ)題.4、A【解析】利用點斜式求得直線方程.【詳解】依題意可知,所求直線的斜率為,所以所求直線方程為,即.故選:A5、B【解析】利用正弦定理得到,進而或,由,得,即可求解【詳解】由正弦定理得,,或,,,故滿足條件的有且只有一個.故選:B6、D【解析】由等比數(shù)列的性質(zhì)直接求得.【詳解】在等比數(shù)列中,由等比數(shù)列的性質(zhì)可得:由,解得:;由可得:,所以.故選:D7、C【解析】先求動點的軌跡方程,再根據(jù)面積的最大值求得,根據(jù)的面積最小值求,由此可求雙曲線的離心率.【詳解】設(shè),,,依題意得,即,兩邊平方化簡得,所以動點的軌跡是圓心為,半徑的圓,當(dāng)位于圓的最高點時的面積最大,所以,解得;當(dāng)位于圓的最左端時的面積最小,所以,解得,故雙曲線的離心率為.故選:C.8、B【解析】利用余弦定理可得,然后利用正弦定理可得,即求.【詳解】因為,所以,由余弦定理得,,所以,設(shè)外接圓的半徑為,由正統(tǒng)定理得,,所以,所以外接圓的面積是.故選:B.9、B【解析】由前項和公式直接作差可得.【詳解】數(shù)列的前n項和(n∈N*),所以.故選:B.10、D【解析】求得陰影部分的面積,結(jié)合幾何概型概率計算公式,計算出所求的概率.【詳解】設(shè)正六邊形的邊長為,則其面積為.陰影部分面積為,故所求概率為.故選:D11、B【解析】設(shè),先表示出,再利用余弦定理即可求解.【詳解】如圖所示,,設(shè)塔高為,因為平面ABC,所以,所以,又,即,解得.故選:B.12、B【解析】根據(jù)全稱命題和特稱命題互為否定,即可得到結(jié)果.【詳解】因為命題,,所以為,.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、ABD【解析】結(jié)合橢圓定義判斷A選項的正確性,結(jié)合向量數(shù)量積的坐標(biāo)運算判斷B選項的正確性,直接法求得橢圓的離心率,由此判斷C選項的正確性,結(jié)合兩點間距離公式判斷D選項的正確性.【詳解】對于選項:由橢圓定義可得:,因此的周長為,所以選項正確;對于選項:設(shè),則,且,又,,所以,,因此,解得,,故選項正確;對于選項:因為,,所以,即,所以離心率,所以選項錯誤;對于選項:設(shè),,則點到圓的圓心的距離為,因為,所以,所以選項正確,故選:ABD14、②④【解析】將x換成,將y換成,若方程不變則關(guān)于原點對稱;將x換成,曲線的方程不變則關(guān)于y軸對稱;令通過解方程即可求得被x軸所截得的弦長;利用基本不等式即可判斷出曲線C上y軸右側(cè)的點到原點距離是否不超過2,根據(jù)曲線C關(guān)于y軸對稱,即可判斷出曲線C上的點到原點距離是否都不超過2.【詳解】對于①,將x換成,將y換成,方程改變,則曲線C關(guān)于點不對稱,故①錯誤;對于②,將x換成,曲線的方程不變,則曲線C關(guān)于y軸對稱,故②正確;對于③,令得,,解得,即曲線C與x軸的交點為和,則曲線C被x軸所截得的弦長為,故③錯誤;對于④,當(dāng)時,,可得,當(dāng)且僅當(dāng)時取等號,即,則,即曲線C上y軸右側(cè)的點到原點的距離都不超過2,此曲線關(guān)于y軸對稱,即曲線C上y軸左側(cè)的點到原點的距離也不超過2,故④正確;故答案為:②④.15、(1)直線過定點P(4,3),直線和圓總有兩個不同交點(2)k=1,【解析】(1)把直線方程化為點斜式方程即可;(2)由圓的性質(zhì)知,當(dāng)直線與PC垂直時,弦長最短.【小問1詳解】直線方程可化為,則直線過定點P(4,3),又圓C標(biāo)準(zhǔn)方程為,圓心為,半徑為,而,所以點P在圓內(nèi),所以不論k取何值,直線和圓總有兩個不同交點.【小問2詳解】由圓的性質(zhì)知,當(dāng)直線與PC垂直時,弦長最短.,所以k=1時弦長最短.弦長為.16、.【解析】利用空間向量夾角公式進行求解即可.【詳解】取CD的中點O,以O(shè)為原點,以CD所在直線為x軸,以底面內(nèi)過點O且與CD垂直的直線為y軸,以過點O且與底面垂直的直線為z軸,建立如圖所示的空間直角坐標(biāo)系設(shè),則,,,,,,所以,所以異面直線AC與BD所成角的余弦值為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析;(3)不存在,理由見解析.【解析】(1)由橢圓所過點及離心率,列方程組,再求解即得;(2)設(shè)出點A,B坐標(biāo)并列出它們滿足的關(guān)系,利用點差法即可作答;(3)設(shè)直線的方程,聯(lián)立直線與橢圓的方程,借助韋達定理求得,,再結(jié)合為等邊三角形的條件即可作答.【詳解】(1)顯然,半焦距c有,即,則,所以橢圓的標(biāo)準(zhǔn)方程為;(2)設(shè),,,,由(1)知,,兩式相減得,即,而弦的中點,則有,所以;(3)假定存在符合要求的點P,由(1)知,設(shè)直線的方程為,由得:,則,,于是得,從而得點,,因為等邊三角形,即有,,因此,,,從而得,整理得,無解,所以在y軸上不存在點,使得為等邊三角形.18、(1);(2).【解析】(1)聯(lián)立直線l與拋物線C的方程消去x,借助判別式建立不等式求解作答.(2)利用(1)中信息求出點縱坐標(biāo)差的絕對值即可計算作答.【小問1詳解】依題意,由消去x并整理得:,因與有公共點,則,解得:,所以的取值范圍是.【小問2詳解】拋物線的焦點,則,設(shè),由(1)知,,則,因此,,所以的面積.19、(1)(2)或【解析】(1)點和的中垂線經(jīng)過圓心,兩直線聯(lián)立方程得圓心坐標(biāo),再利用兩點間距離公式求解半徑.(2)已知弦長,求解直線方程,分類討論斜率是否存在.小問1詳解】點和的中點為,,所以中垂線的,利用點斜式得方程為,聯(lián)立方程得圓心坐標(biāo)為,所以圓C的標(biāo)準(zhǔn)方程為.【小問2詳解】當(dāng)過點的直線l斜率不存在時,直線方程為,此時弦長,符合題意.當(dāng)過點的直線l斜率存在時,設(shè)直線方程為,化簡得,弦心距,所以,解得,所以直線方程為.綜上所述直線方程為或.20、(1)(2)存在,【解析】(1)利用拋物線的焦半徑公式求得點的橫坐標(biāo),進而求得p,可得答案;(2)根據(jù)題意可設(shè)直線方程,和拋物線方程聯(lián)立,得到根與系數(shù)的關(guān)系式,利用直線與的斜率互為倒數(shù)列出等式,化簡可得結(jié)論.【小問1詳解】(1)則,,,,故C的方程為:;【小問2詳解】假設(shè)存在定點,使得直線與的斜率互為倒數(shù),由題意可知,直線AB的斜率存在,且不為零,,,,,所以Δ>0y1+即或,,,則,,使得直線與的斜率互為倒數(shù).21、(Ⅰ)證明見解析(Ⅱ)證明見解析【解析】(Ⅰ)證明和得到平面.(Ⅱ)根據(jù)相似得到證明平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療診斷、監(jiān)護及治療設(shè)備制造考核試卷
- 二零二五年度跨境電子商務(wù)平臺運營承包合同2篇
- 合同簽訂授權(quán)委托書
- 2025年滬教版七年級歷史下冊月考試卷含答案
- 2025年北師大新版八年級地理上冊月考試卷含答案
- 2025年外研版三年級起點選擇性必修3歷史下冊階段測試試卷
- 2025年度暖通工程綠色建材采購合同4篇
- 二零二五版景區(qū)導(dǎo)覽門牌定制服務(wù)合同4篇
- 2025版南京市房產(chǎn)局推廣的房屋抵押權(quán)設(shè)立合同模板4篇
- 二零二五年度農(nóng)膜行業(yè)人才培養(yǎng)與交流合同3篇
- DB32-T 4444-2023 單位消防安全管理規(guī)范
- 臨床三基考試題庫(附答案)
- 合同簽訂執(zhí)行風(fēng)險管控培訓(xùn)
- DB43-T 3022-2024黃柏栽培技術(shù)規(guī)程
- 九宮數(shù)獨200題(附答案全)
- 人員密集場所消防安全管理培訓(xùn)
- 《聚焦客戶創(chuàng)造價值》課件
- PTW-UNIDOS-E-放射劑量儀中文說明書
- JCT587-2012 玻璃纖維纏繞增強熱固性樹脂耐腐蝕立式貯罐
- 典范英語2b課文電子書
- 員工信息登記表(標(biāo)準(zhǔn)版)
評論
0/150
提交評論