版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆山東省鄒平市一中學(xué)校高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù)的零點(diǎn)在區(qū)間內(nèi),則()A.4 B.3C.2 D.12.已知則當(dāng)最小時的值時A.﹣3 B.3C.﹣1 D.13.將函數(shù)圖象向右平移個單位得到函數(shù)的圖象,已知的圖象關(guān)于原點(diǎn)對稱,則的最小正值為()A.2 B.3C.4 D.64.設(shè)全集,集合,則()A. B.C. D.5.下列函數(shù)中在定義域上為減函數(shù)的是()A. B.C. D.6.已知是定義在上的偶函數(shù),那么的最大值是()A.0 B.C. D.17.函數(shù)的最小值為()A. B.C.0 D.8.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞增的是()A. B.C. D.9.若函數(shù)(,且)在區(qū)間上單調(diào)遞增,則A., B.,C., D.,10.已知集合,,,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.以等邊三角形每個頂點(diǎn)為圓心,以邊長為半徑,在另兩個頂點(diǎn)間作一段弧,三段弧圍成的曲邊三角形就是勒洛三角形.勒洛三角形是由德國機(jī)械工程專家、機(jī)構(gòu)運(yùn)動學(xué)家勒洛首先發(fā)現(xiàn),所以以他的名字命名.一些地方的市政檢修井蓋、方孔轉(zhuǎn)機(jī)等都有應(yīng)用勒洛三角形.如圖,已知某勒洛三角形的一段弧的長度為,則該勒洛三角形的面積是___________.12.我國古代數(shù)學(xué)名著《九章算術(shù)》中將底面為矩形且有一側(cè)棱垂直于底面的四棱錐稱為“陽馬”,現(xiàn)有一“陽馬”如圖所示,平面,,,,則該“陽馬”外接球的表面積為________.13.已知弧長為cm2的弧所對的圓心角為,則這條弧所在的扇形面積為_____cm214.若函數(shù)在區(qū)間內(nèi)為減函數(shù),則實(shí)數(shù)a的取值范圍為___________.15.已知集合,則集合的子集個數(shù)為___________.16.第24屆冬季奧林匹克運(yùn)動會簡稱“北京—張家口冬奧會”,將于2022.2.4~2022.2.20在中華人民共和國北京市和張家口市聯(lián)合舉行.某公司為迎接冬奧會的到來,設(shè)計(jì)了一款扇形的紀(jì)念品,扇形圓心角為2,弧長為12cm,則扇形的面積為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),.(1)若角滿足,求;(2)若圓心角為,半徑為2的扇形的弧長為,且,,求.18.已知函數(shù)部分圖象如圖所示,點(diǎn)為函數(shù)的圖象與y軸的一個交點(diǎn),點(diǎn)B為函數(shù)圖象上的一個最高點(diǎn),且點(diǎn)B的橫坐標(biāo)為,點(diǎn)為函數(shù)的圖象與x軸的一個交點(diǎn)(1)求函數(shù)的解析式;(2)已知函數(shù)的值域?yàn)?,求a,b的值19.已知函數(shù),.(1)求的值.(2)設(shè),,,求的值.20.已知由方程kx2-8x+16=0的根組成的集合A只有一個元素,試求實(shí)數(shù)k的值21.已知函數(shù)的圖象在定義域上連續(xù)不斷.若存在常數(shù),使得對于任意的,恒成立,稱函數(shù)滿足性質(zhì).(1)若滿足性質(zhì),且,求的值;(2)若,試說明至少存在兩個不等的正數(shù),同時使得函數(shù)滿足性質(zhì)和.(參考數(shù)據(jù):)(3)若函數(shù)滿足性質(zhì),求證:函數(shù)存在零點(diǎn).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】根據(jù)零點(diǎn)存在性定理即可判斷出零點(diǎn)所在的區(qū)間.【詳解】因?yàn)?,,所以函?shù)在區(qū)間內(nèi)有零點(diǎn),所以.故選:B.2、B【解析】由題目已知可得:當(dāng)時,的值最小故選3、B【解析】根據(jù)圖象平移求出g(x)解析式,g(x)為奇函數(shù),則g(0)=0,據(jù)此即可計(jì)算ω的取值.【詳解】根據(jù)已知,可得,∵的圖象關(guān)于原點(diǎn)對稱,所以,從而,Z,所以,其最小正值為3,此時故選:B4、A【解析】根據(jù)補(bǔ)集定義計(jì)算【詳解】因?yàn)榧?,又因?yàn)槿裕?故選:A.【點(diǎn)睛】本題考查補(bǔ)集運(yùn)算,屬于簡單題5、C【解析】根據(jù)基本初等函數(shù)的單調(diào)性逐一判斷各個選項(xiàng)即可得出答案.【詳解】對于A,由函數(shù),定義域?yàn)?,且在上遞增,故A不符題意;對于B,由函數(shù),定義域?yàn)椋以谏线f增,故B不符題意;對于C,由函數(shù),定義域?yàn)?,且在上遞減,故C符合題意;對于D,由函數(shù),定義域?yàn)?,且在上遞增,故D不符題意.故選:C6、C【解析】∵f(x)=ax2+bx是定義在[a-1,2a]上偶函數(shù),∴a-1+2a=0,∴a=.又f(-x)=f(x),∴b=0,∴,所以.故選C.7、C【解析】利用對數(shù)函數(shù)單調(diào)性得出函數(shù)在時取得最小值【詳解】,因?yàn)槭窃龊瘮?shù),因此當(dāng)時,,,當(dāng)時,,,而時,,所以時,故選:C8、A【解析】根據(jù)基本初等函數(shù)的單調(diào)性與奇偶性的定義判斷可得;【詳解】解:對于A:定義域?yàn)?,且,即為偶函?shù),且在上單調(diào)遞增,故A正確;對于B:定義域?yàn)椋?,即為偶函?shù),在上單調(diào)遞減,故B錯誤;對于C:定義域?yàn)?,定義域不關(guān)于原點(diǎn)對稱,故為非奇非偶函數(shù),故C錯誤;對于D:定義域?yàn)?,但是,故為非奇非偶函?shù),故D錯誤;故選:A9、B【解析】函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間內(nèi)不等于,故當(dāng)時,函數(shù)才能遞增故選10、C【解析】解一元二次不等式求出集合,解不等式求出集合,再進(jìn)行交集運(yùn)算即可求解.【詳解】因?yàn)?,,所以,故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】計(jì)算出一個弓形的面積,由題意可知,勒洛三角形由三個全等的弓形以及一個正三角形構(gòu)成,利用弓形和正三角形的面積可求得結(jié)果.【詳解】由弧長公式可得,可得,所以,由和線段所圍成的弓形的面積為,而勒洛三角形由三個全等的弓形以及一個正三角形構(gòu)成,因此,該勒洛三角形的面積為.故答案為:.12、【解析】以,,為棱作長方體,長方體的對角線即為外接球的直徑,從而求出外接球的半徑,進(jìn)而求出外接球的表面積.【詳解】由題意,以,,為棱作長方體,長方體的對角線即為外接球的直徑,設(shè)外接球的半徑為,則故.故答案為:【點(diǎn)睛】本題考查了多面體外接球問題以及球的表面積公式,屬于中檔題.13、【解析】先求出半徑,再用扇形面積公式求解即可.【詳解】由已知半徑為,則這條弧所在的扇形面積為.故答案為:.14、【解析】由復(fù)合函數(shù)單調(diào)性的判斷法則及對數(shù)函數(shù)的真數(shù)大于0恒成立,列出不等式組求解即可得答案.【詳解】解:因?yàn)?,函?shù)在區(qū)間內(nèi)為減函數(shù),所以有,解得,所以實(shí)數(shù)a的取值范圍為,故答案為:.15、2【解析】先求出然后直接寫出子集即可.【詳解】,,所以集合的子集有,.子集個數(shù)有2個.故答案為:2.16、36【解析】首先根據(jù)弧長公式求出扇形的半徑,再根據(jù)扇形的面積公式計(jì)算可得;【詳解】解:依題意、cm,所以,即cm,所以;故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)對已知式子化簡變形求出,從而可求出的值,(2)先對化簡變形得,再由可求出,再利用弧長公式可求得結(jié)果【小問1詳解】∵,∴,∴.【小問2詳解】∵∴,∴,∵,∴或.∴或.18、(1)(2)或【解析】(1)根據(jù)圖象可得函數(shù)的周期,利用求出,根據(jù)五點(diǎn)畫圖法求出,根據(jù)點(diǎn)A坐標(biāo)求出A,進(jìn)而得出解析式;(2)根據(jù)三角函數(shù)的性質(zhì)求出的值域,由(1)知,對的取值分類討論,列出方程組,解之即可.【小問1詳解】由函數(shù)的部分圖象可知,函數(shù)的周期,可得,由五點(diǎn)畫圖法可知,可得,有,又由,可得,故有函數(shù)的解析式為;【小問2詳解】由(1)知,函數(shù)的值域?yàn)棰佼?dāng)時,解得;②當(dāng)時,解得由上知或19、(1);(2).【解析】(1)代入可求得其值;(2)由已知求得,,再由同角三角函數(shù)的關(guān)系可求得,,運(yùn)用余弦的和角公式可求得答案.【詳解】解:(1).(2),∴,∵,∴,∵,∴,,∵.20、k=0或1.【解析】討論當(dāng)k=0時和當(dāng)k≠0時,兩種情況,其中當(dāng)k≠0時,只需Δ=64-64k=0即可.試題解析:當(dāng)k=0時,原方程變?yōu)椋?x+16=0,所以x=2,此時集合A中只有一個元素2.當(dāng)k≠0時,要使一元二次方程kx2-8x+16=0有一個實(shí)根,需Δ=64-64k=0,即k=1.此時方程的解為x1=x2=4,集合A中只有一個元素4.綜上可知k=0或1.21、(1)(2)答案見解析(3)證明見解析【解析】(1)由滿足性質(zhì)可得恒成立,取可求,取可求,取可求,取求,由此可求的值;(2)設(shè)滿足,利用零點(diǎn)存在定理證明關(guān)于的方程至少有兩個解,證明至少存在兩個不等的正數(shù),同時使得函數(shù)滿足性質(zhì)和;(3)分別討論,,時函數(shù)的零點(diǎn)的存在性,由此完成證明.【小問1詳解】因?yàn)闈M足性質(zhì),所以對于任意的x,恒成立.又因?yàn)椋?,,,由可得,由可得,所以?【小問2詳解】若正數(shù)滿足,等價于,記,顯然,,因?yàn)椋?,,?因?yàn)榈?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度國際學(xué)校外籍教師專業(yè)成長與發(fā)展協(xié)議3篇
- 2024小型企業(yè)遠(yuǎn)程辦公勞動合同范本3篇
- 2024年股權(quán)轉(zhuǎn)讓協(xié)議:高科技公司股份交易
- 粘土多肉制作課程設(shè)計(jì)
- 班級特色課程設(shè)計(jì)表
- 煤炭供應(yīng)鏈的管理與效率提升考核試卷
- 打地鼠游戲 課程設(shè)計(jì)
- 2024年度員工自愿社保權(quán)益終止合同范本3篇
- 硝酸鈉課程設(shè)計(jì)
- 照明產(chǎn)品設(shè)計(jì)大賽策劃考核試卷
- (完整)雙溪課程評量表
- DB5105-T 4001-2023 白酒貯藏容器 陶壇
- 網(wǎng)絡(luò)安全培訓(xùn)-網(wǎng)絡(luò)安全培訓(xùn)課件
- 人教版高一數(shù)學(xué)上冊必修一第三章同步練習(xí)題課后練習(xí)題含答案解析及章知識點(diǎn)總結(jié)
- 大學(xué)有機(jī)化學(xué)人名反應(yīng)總結(jié)
- 污水、廢水處理:芬頓氧化法工藝操作及設(shè)計(jì)
- CVT電壓式互感器的結(jié)構(gòu)及工作原理、內(nèi)在邏輯
- H型鋼梁等強(qiáng)連接計(jì)算
- 《文明城市建設(shè)問題研究開題報告3000字》
- GB/T 3917.1-1997紡織品織物撕破性能第1部分:撕破強(qiáng)力的測定沖擊擺錘法
- 玲龍醫(yī)用診斷X 射線系統(tǒng) XR 6000維修手冊
評論
0/150
提交評論