版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省龍巖市漳平第一中學(xué)2025屆高二上數(shù)學(xué)期末統(tǒng)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在的最大值是()A. B.C. D.2.已知雙曲線的左、右焦點分別為,過點的直線與圓相切于點,交雙曲線的右支于點,且點是線段的中點,則雙曲線的漸近線方程為()A. B.C. D.3.設(shè)命題,則為()A. B.C. D.4.拋物線的焦點坐標(biāo)為()A. B.C. D.5.已知函數(shù),則()A. B.C. D.6.已知函數(shù)的圖象如圖所示,則不等式的解集為()A. B.C. D.7.“楊輝三角”是中國古代數(shù)學(xué)文化的瑰寶之一,最早在中國南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書中出現(xiàn).如圖所示的楊輝三角中,第8行,第3個數(shù)是()第0行1第1行11第2行121第3行1331第4行14641……A.21 B.28C.36 D.568.?dāng)?shù)列1,6,15,28,45,...中的每一項都可用如圖所示的六邊形表示出來,故稱它們?yōu)榱呅螖?shù),那么第10個六邊形數(shù)為()A.153 B.190C.231 D.2769.十二平均律是我國明代音樂理論家和數(shù)學(xué)家朱載堉發(fā)明的.明萬歷十二年(公元1584年),他寫成《律學(xué)新說》,提出了十二平均律的理論.十二平均律的數(shù)學(xué)意義是:在1和2之間插入11個正數(shù),使包含1和2的這13個數(shù)依次成遞增的等比數(shù)列.依此規(guī)則,插入的第四個數(shù)應(yīng)為()A. B.C. D.10.橢圓的焦點坐標(biāo)是()A.(±4,0) B.(0,±4)C.(±5,0) D.(0,±5)11.已知A,B,C,D是同一球面上的四個點,其中是正三角形,平面,,則該球的表面積為()A. B.C. D.12.在長方體中,,,則異面直線與所成角的正弦值是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正項等比數(shù)列的前項和為,且,則_______14.一條直線過點,且與拋物線交于,兩點.若,則弦中點到直線的距離等于__________15.若數(shù)列的前n項和,則其通項公式________16.參加數(shù)學(xué)興趣小組的小何同學(xué)在打籃球時,發(fā)現(xiàn)當(dāng)籃球放在地面上時,籃球的斜上方燈泡照過來的光線使得籃球在地面上留下的影子有點像數(shù)學(xué)課堂上學(xué)過的橢圓,但他自己還是不太確定這個想法,于是回到家里翻閱了很多參考資料,終于明白自己的猜想是沒有問題的,而且通過學(xué)習(xí),他還確定地面和籃球的接觸點(切點)就是影子橢圓的焦點.他在家里做了個探究實驗:如圖所示,桌面上有一個籃球,若籃球的半徑為個單位長度,在球的右上方有一個燈泡(當(dāng)成質(zhì)點),燈泡與桌面的距離為個單位長度,燈泡垂直照射在平面的點為,影子橢圓的右頂點到點的距離為個單位長度,則這個影子橢圓的離心率______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線C:y2=4x經(jīng)過點A(1,2),直線l:y=kx+b與拋物線C交于M,N兩點.(1)若,求直線l的方程;(2)當(dāng)AM⊥AN時,若對任意滿足條件的實數(shù)k,都有b=mk+n(m,n為常數(shù)),求m+2n的值.18.(12分)已知橢圓的離心率為,左、右焦點分別為,,過的直線交橢圓E于A,B兩點.當(dāng)軸時,(1)求橢圓E的方程;(2)求的范圍19.(12分)在△ABC中,(1)求B的大?。?2)求cosA+cosC的最大值20.(12分)已知三角形的三個頂點,求邊所在直線的方程,以及該邊上中線所在直線的方程21.(12分)某快遞公司收取快遞費用的標(biāo)準(zhǔn)是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,超過的部分,每超出(不足,按計算)需要再收費5元.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點值作代表).(1)求這60天每天包裹數(shù)量的平均值和中位數(shù);(2)該公司從收取的每件快遞的費用中抽取5元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.已知公司前臺有工作人員3人,每人每天工資100元,以樣本估計總體,試估計該公司每天的利潤有多少元?(3)小明打算將四件禮物隨機分成兩個包裹寄出,且每個包裹重量都不超過,求他支付的快遞費為45元的概率.22.(10分)已知橢圓:的長軸長為6,離心率為,長軸的左,右頂點分別為A,B(1)求橢圓的方程;(2)已知過點的直線交橢圓于M、N兩個不同的點,直線AM,AN分別交軸于點S、T,記,(為坐標(biāo)原點),當(dāng)直線的傾斜角為銳角時,求的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用函數(shù)單調(diào)性求解.【詳解】解:因為函數(shù)是單調(diào)遞增函數(shù),所以函數(shù)也是單調(diào)遞增函數(shù),所以.故選:C2、D【解析】焦點三角形問題,可結(jié)合為三角形的中位線,判斷:焦點三角形為直角三角形,并且有,,可由勾股定理得出關(guān)系,從而得到關(guān)系,從而求得漸近線方程.【詳解】由題意知,,且點是線段的中點,點是線段的中點,為三角形的中位線故,故,由雙曲線定義有由勾股定理有故則則,故故漸近線方程為:故選:D【點睛】雙曲線上一點與兩焦點構(gòu)成的三角形,稱為雙曲線的焦點三角形,與焦點三角形有關(guān)的計算或證明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的關(guān)系3、D【解析】利用含有一個量詞的命題的否定的定義判斷.【詳解】因為命題是全稱量詞命題,所以其否定是存在量詞命題,即,故選:D4、C【解析】先把拋物線方程化為標(biāo)準(zhǔn)方程,求出即可求解【詳解】由,有,可得,拋物線的焦點坐標(biāo)為故選:C5、B【解析】求出,代值計算可得的值.【詳解】因為,則,故.故選:B.6、D【解析】原不等式等價于,根據(jù)的圖象判斷函數(shù)的單調(diào)性,可得和的解集,再分情況或解不等式即可求解.【詳解】由函數(shù)的圖象可知:在和上單調(diào)遞增,在上單調(diào)遞減,所以當(dāng)時,;當(dāng)時,;由可得,所以或,即或,解得:或,所以原不等式的解集為:,故選:D.7、B【解析】由題意知第8行的數(shù)就是二項式的展開式中各項的二項式系數(shù),可得第8行,第3個數(shù)是為,即可求解【詳解】解:由題意知第8行的數(shù)就是二項式的展開式中各項的二項式系數(shù),故第8行,第3個數(shù)是為故選:B8、B【解析】細(xì)心觀察,尋求相鄰項及項與序號之間的關(guān)系,同時聯(lián)系相關(guān)知識,如等差數(shù)列、等比數(shù)列等,結(jié)合圖形可知,,,,,,,據(jù)此即可求解.【詳解】由題意知,數(shù)列的各項為1,6,15,28,45,...所以,,,,,,所以.故選:B【點睛】本題考查合情推理中的歸納推理;考查邏輯推理能力;觀察分析、尋求規(guī)律是求解本題的關(guān)鍵;屬于中檔題、探索型試題.9、C【解析】先求出等比數(shù)列的公比,再由等比數(shù)列的通項公式即可求解.【詳解】用表示這個數(shù)列,依題意,,則,,第四個數(shù)即.故選:C.10、A【解析】根據(jù)橢圓的方程求得的值,進(jìn)而求得橢圓的焦點坐標(biāo),得到答案.【詳解】由橢圓,可得,則,所以橢圓的焦點坐標(biāo)為和.故選:A.11、C【解析】由題意畫出幾何體的圖形,把、、、擴展為三棱柱,上下底面中心連線的中點與的距離為球的半徑,由此能求出球的表面積【詳解】把、、、擴展為三棱柱,上下底面中心連線的中點與的距離為球的半徑,,,是正三角形,,,球的表面積為故選:C12、C【解析】連接,可得,得到異面直線與所成角即為直線與所成角,設(shè),設(shè),求得的值,在中,利用余弦定理,即可求解.【詳解】如圖所示,連接,在正方體中,可得,所以異面直線與所成角即為直線與所成角,設(shè),由在長方體中,,,設(shè),可得,在直角中,可得,在中,可得,所以,因為,所以.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)給定條件求出正項等比數(shù)列的公比即可計算作答.【詳解】設(shè)正項等比數(shù)列的公比為,依題意,,即,而,解得,所以.故答案為:14、【解析】求出弦的中點到拋物線準(zhǔn)線的距離,進(jìn)一步得到弦的中點到直線的距離【詳解】解:如圖,拋物線的焦點為,,弦的中點到準(zhǔn)線的距離為,則弦的中點到直線的距離等于故答案為:15、【解析】由和計算【詳解】由題意,時,,所以故答案為:16、【解析】建立平面直角坐標(biāo)系,解得圖中N、Q的橫坐標(biāo),列方程組即可求得橢圓的a、c,進(jìn)而求得橢圓的離心率.【詳解】以A為原點建立平面直角坐標(biāo)系,則,,直線PR的方程為設(shè),由到直線PR的距離為1,得,解之得或(舍)則,又設(shè)直線PN方程為由到直線PN的距離為1,得,整理得則,又,故則直線PN的方程為,故,由,解得,故橢圓的離心率故答案為:【點睛】數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡捷。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)3或【解析】(1)由可得,則可得直線為,設(shè),然后將直線方程代入拋物線方程中消去,再利用根與系數(shù)的關(guān)系,由可得,三個式子結(jié)合可求出,從而可得直線方程,(2)將直線方程代入拋物線方程中消去,再利用根與系數(shù)的關(guān)系表示出,再結(jié)合直線方程表示出,由AM⊥AN可得,化簡結(jié)合前面的式子可求出或,從而可可求出的值,進(jìn)而可求得答案【小問1詳解】因為A(1,2),,所以,則直線為,設(shè),由,得,由,得則,因為,所以,所以,所以,所以,解得,所以直線的方程為,即,【小問2詳解】設(shè),由,得,由,得,則,所以,,因為AM⊥AN,所以,所以,即,所以,所以,所以或,所以或,所以或18、(1)(2)【解析】(1)根據(jù)離心率及通徑長求出橢圓方程;(2)分直線AB斜率存在和斜率不存在兩種情況得到的范圍,進(jìn)而得到答案.【小問1詳解】當(dāng)軸時,取代入橢圓方程得:,得,所以,又,解得,,所以橢圓方程為【小問2詳解】由,記,當(dāng)軸時,由(1)知:,所以,當(dāng)AB斜率為k時,直線AB為,,消去y得,所以,,所以,綜上,的范圍是.19、(1)(2)1【解析】(1)由余弦定理及題設(shè)得;(2)由(1)知當(dāng)時,取得最大值試題解析:(1)由余弦定理及題設(shè)得,又∵,∴;(2)由(1)知,,因為,所以當(dāng)時,取得最大值考點:1、解三角形;2、函數(shù)的最值.20、;【解析】根據(jù)兩點式方程和中點坐標(biāo)公式求解,并化為一般式方程即可.【詳解】解:過的兩點式方程為,整理得即邊所在直線的方程為,邊上的中線是頂點A與邊中點M所連線段,由中點坐標(biāo)公式可得點M的坐標(biāo)為,即過,的直線的方程為,即整理得所以邊上中線所在直線的方程為21、(1)公司每天包裹的平均數(shù)和中位數(shù)都為260件.(2)該公司平均每天的利潤有1000元.(3).【解析】(1)對于平均數(shù),運用平均數(shù)的公式即可;由于中位數(shù)將頻率分布直方圖分成面積相等的兩部分,先確定中位數(shù)位于哪一組,然后建立關(guān)于中位數(shù)的方程即可求出.(2)利用每天的總收入減去工資的支出,即可得到公司每天的利潤.(3)該為古典概型,根據(jù)題意分別確定總的基本事件個數(shù),以及事件“快遞費為45元”包括的基本事件個數(shù),即可求出概率.【詳解】(1)每天包裹數(shù)量的平均數(shù)為;或:由圖可知每天攬50、150、250、350、450件的天數(shù)分別為6、6、30、12、6,所以每天包裹數(shù)量的平均數(shù)為設(shè)中位數(shù)為x,易知,則,解得x=260.所以公司每天包裹的平均數(shù)和中位數(shù)都為260件.(2)由(1)可知平均每天的攬件數(shù)為260,利潤為(元),所以該公司平均每天的利潤有1000元(3)設(shè)四件禮物分為二個包裹E、F,因為禮物A、C、D共重(千克),禮物B、C、D共重(千克),都超過5千克,故E和F的重量數(shù)分別有,,,,共5種,對應(yīng)的快遞費分別為45、45、50,45,50(單位:元)故所求概率為.【點睛】主要考查了頻率分布直方圖的平均數(shù),中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 飲食失調(diào)與腫瘤發(fā)生風(fēng)險-洞察分析
- 香附藥材藥理作用研究-洞察分析
- 塔吊設(shè)備維護保養(yǎng)-洞察分析
- 《壽險觀念的管理》課件
- 《電容器的連接》課件
- 《情緒管理》課件
- 《企業(yè)管理與標(biāo)準(zhǔn)化》課件
- 《復(fù)習(xí)課件公選財務(wù)管理》課件
- 農(nóng)業(yè)種植托管作業(yè)合同(2篇)
- 《小學(xué)英語主謂賓》課件
- 生殖與衰老課件
- 2024年建筑繼續(xù)教育-安全員繼續(xù)教育筆試參考題庫含答案
- 經(jīng)典藍(lán)色商務(wù)商業(yè)模板
- 中國專利獎申報要點
- 郵政代理保險營銷方案
- 讓思維活躍起來《偵探思維觀察力訓(xùn)練營》 心理健康七年級全一冊
- 高壓氧工作總結(jié)
- 梁平法制圖規(guī)則及鋼筋翻樣講解
- 譯林版八年級上冊初二英語全冊課時練(一練一練)
- 中國公民健康素養(yǎng)-基本知識與技能
- 智慧物流第5套理論題復(fù)制
評論
0/150
提交評論