版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
浙江省嘉興市六校聯(lián)考2023-2024學年十校聯(lián)考最后數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知點,與點關于軸對稱的點的坐標是()A. B. C. D.2.正比例函數(shù)y=(k+1)x,若y隨x增大而減小,則k的取值范圍是()A.k>1 B.k<1 C.k>﹣1 D.k<﹣13.如圖,△ABC中,∠B=70°,則∠BAC=30°,將△ABC繞點C順時針旋轉(zhuǎn)得△EDC.當點B的對應點D恰好落在AC上時,∠CAE的度數(shù)是()A.30° B.40° C.50° D.60°4.我市某小區(qū)開展了“節(jié)約用水為環(huán)保作貢獻”的活動,為了解居民用水情況,在小區(qū)隨機抽查了10戶家庭的月用水量,結(jié)果如下表:月用水量(噸)8910戶數(shù)262則關于這10戶家庭的月用水量,下列說法錯誤的是()A.方差是4 B.極差是2 C.平均數(shù)是9 D.眾數(shù)是95.如圖,AB是定長線段,圓心O是AB的中點,AE、BF為切線,E、F為切點,滿足AE=BF,在上取動點G,國點G作切線交AE、BF的延長線于點D、C,當點G運動時,設AD=y,BC=x,則y與x所滿足的函數(shù)關系式為()A.正比例函數(shù)y=kx(k為常數(shù),k≠0,x>0)B.一次函數(shù)y=kx+b(k,b為常數(shù),kb≠0,x>0)C.反比例函數(shù)y=(k為常數(shù),k≠0,x>0)D.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,x>0)6.方程x(x-2)+x-2=0的兩個根為()A., B.,C., D.,7.一次函數(shù)滿足,且y隨x的增大而減小,則此函數(shù)的圖像一定不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如圖,矩形OABC有兩邊在坐標軸上,點D、E分別為AB、BC的中點,反比例函數(shù)y=(x<0)的圖象經(jīng)過點D、E.若△BDE的面積為1,則k的值是()A.﹣8 B.﹣4 C.4 D.89.下列選項中,能使關于x的一元二次方程ax2﹣4x+c=0一定有實數(shù)根的是()A.a(chǎn)>0 B.a(chǎn)=0 C.c>0 D.c=010.如果a﹣b=5,那么代數(shù)式(﹣2)?的值是()A.﹣ B. C.﹣5 D.511.如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(﹣1,2),且與x軸交點的橫坐標分別為x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列結(jié)論:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個12.如圖,△ABC中,AB=3,AC=4,BC=5,D、E分別是AC、AB的中點,則以DE為直徑的圓與BC的位置關系是()A.相切 B.相交 C.相離 D.無法確定二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在不透明的口袋中有若干個完全一樣的紅色小球,現(xiàn)放入10個僅顏色不同的白色小球,均勻混合后,有放回的隨機摸取30次,有10次摸到白色小球,據(jù)此估計該口袋中原有紅色小球個數(shù)為_____.14.分解因式:.15.關于x的一元二次方程x2﹣2kx+k2﹣k=0的兩個實數(shù)根分別是x1、x2,且x12+x22=4,則x12﹣x1x2+x22的值是_____.16.若方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù),則m=______17.計算:____.18.已知x1,x2是方程x2-3x-1=0的兩根,則=______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某公司計劃購買A,B兩種型號的電腦,已知購買一臺A型電腦需0.6萬元,購買一臺B型電腦需0.4萬元,該公司準備投入資金y萬元,全部用于購進35臺這兩種型號的電腦,設購進A型電腦x臺.(1)求y關于x的函數(shù)解析式;(2)若購進B型電腦的數(shù)量不超過A型電腦數(shù)量的2倍,則該公司至少需要投入資金多少萬元?20.(6分)如圖,已知在平面直角坐標系xOy中,O是坐標原點,點A(2,5)在反比例函數(shù)的圖象上,過點A的直線y=x+b交x軸于點B.求k和b的值;求△OAB的面積.21.(6分)如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點.求反比例函數(shù)和一次函數(shù)的解析式;求直線AB與x軸的交點C的坐標及△AOB的面積;直接寫出一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.22.(8分)某地一路段修建,甲隊單獨完成這項工程需要60天,若由甲隊先做5天,再由甲、乙兩隊合作9天,共完成這項工程的三分之一.(1)求甲、乙兩隊合作完成這項工程需要多少天?(2)若甲隊的工作效率提高20%,乙隊工作效率提高50%,甲隊施工1天需付工程款4萬元,乙隊施工一天需付工程款2.5萬元,現(xiàn)由甲乙兩隊合作若干天后,再由乙隊完成剩余部分,在完成此項工程的工程款不超過190萬元的條件下要求盡早完成此項工程,則甲、乙兩隊至多要合作多少天?23.(8分)某制衣廠某車間計劃用10天加工一批出口童裝和成人裝共360件,該車間的加工能力是:每天能單獨加工童裝45件或成人裝30件.(1)該車間應安排幾天加工童裝,幾天加工成人裝,才能如期完成任務;(2)若加工童裝一件可獲利80元,加工成人裝一件可獲利120元,那么該車間加工完這批服裝后,共可獲利多少元.24.(10分)先化簡代數(shù)式,再從﹣1,0,3中選擇一個合適的a的值代入求值.25.(10分)某生姜種植基地計劃種植A,B兩種生姜30畝.已知A,B兩種生姜的年產(chǎn)量分別為2000千克/畝、2500千克/畝,收購單價分別是8元/千克、7元/千克.(1)若該基地收獲兩種生姜的年總產(chǎn)量為68000千克,求A,B兩種生姜各種多少畝?(2)若要求種植A種生姜的畝數(shù)不少于B種的一半,那么種植A,B兩種生姜各多少畝時,全部收購該基地生姜的年總收入最多?最多是多少元?26.(12分)某校為了解本校學生每周參加課外輔導班的情況,隨機調(diào)査了部分學生一周內(nèi)參加課外輔導班的學科數(shù),并將調(diào)查結(jié)果繪制成如圖1、圖2所示的兩幅不完整統(tǒng)計圖(其中A:0個學科,B:1個學科,C:2個學科,D:3個學科,E:4個學科或以上),請根據(jù)統(tǒng)計圖中的信息,解答下列問題:請將圖2的統(tǒng)計圖補充完整;根據(jù)本次調(diào)查的數(shù)據(jù),每周參加課外輔導班的學科數(shù)的眾數(shù)是個學科;若該校共有2000名學生,根據(jù)以上調(diào)查結(jié)果估計該校全體學生一周內(nèi)參加課外輔導班在3個學科(含3個學科)以上的學生共有人.27.(12分)如圖,矩形中,點是線段上一動點,為的中點,的延長線交BC于.(1)求證:;(2)若,,從點出發(fā),以l的速度向運動(不與重合).設點運動時間為,請用表示的長;并求為何值時,四邊形是菱形.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據(jù)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù),可得答案.【詳解】解:點,與點關于軸對稱的點的坐標是,
故選:C.【點睛】本題考查了關于y軸對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律:關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù);關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù);關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).2、D【解析】
根據(jù)正比例函數(shù)圖象與系數(shù)的關系列出關于k的不等式k+1<0,然后解不等式即可.【詳解】解:∵正比例函數(shù)y=(k+1)x中,y的值隨自變量x的值增大而減小,∴k+1<0,解得,k<-1;故選D.【點睛】本題主要考查正比例函數(shù)圖象在坐標平面內(nèi)的位置與k的關系.解答本題注意理解:直線y=kx所在的位置與k的符號有直接的關系.k>0時,直線必經(jīng)過一、三象限,y隨x的增大而增大;k<0時,直線必經(jīng)過二、四象限,y隨x的增大而減?。?、C【解析】
由三角形內(nèi)角和定理可得∠ACB=80°,由旋轉(zhuǎn)的性質(zhì)可得AC=CE,∠ACE=∠ACB=80°,由等腰的性質(zhì)可得∠CAE=∠AEC=50°.【詳解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵將△ABC繞點C順時針旋轉(zhuǎn)得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故選C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),熟練運用旋轉(zhuǎn)的性質(zhì)是本題的關鍵.4、A【解析】分析:根據(jù)極差=最大值-最小值;平均數(shù)指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù);一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù),以及方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2],分別進行計算可得答案.詳解:極差:10-8=2,平均數(shù):(8×2+9×6+10×2)÷10=9,眾數(shù)為9,方差:S2=[(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,故選A.點睛:此題主要考查了極差、眾數(shù)、平均數(shù)、方差,關鍵是掌握各知識點的計算方法.5、C【解析】
延長AD,BC交于點Q,連接OE,OF,OD,OC,OQ,由AE與BF為圓的切線,利用切線的性質(zhì)得到AE與EO垂直,BF與OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE與直角BOF全等,利用全等三角形的對應角相等得到∠A=∠B,利用等角對等邊可得出三角形QAB為等腰三角形,由O為底邊AB的中點,利用三線合一得到QO垂直于AB,得到一對直角相等,再由∠FQO與∠OQB為公共角,利用兩對對應角相等的兩三角形相似得到三角形FQO與三角形OQB相似,同理得到三角形EQO與三角形OAQ相似,由相似三角形的對應角相等得到∠QOE=∠QOF=∠A=∠B,再由切線長定理得到OD與OC分別為∠EOG與∠FOG的平分線,得到∠DOC為∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC與三角形OBC相似,同理三角形DOC與三角形DAO相似,進而確定出三角形OBC與三角形DAO相似,由相似得比例,將AD=x,BC=y代入,并將AO與OB換為AB的一半,可得出x與y的乘積為定值,即y與x成反比例函數(shù),即可得到正確的選項.【詳解】延長AD,BC交于點Q,連接OE,OF,OD,OC,OQ,∵AE,BF為圓O的切線,∴OE⊥AE,OF⊥FB,∴∠AEO=∠BFO=90°,在Rt△AEO和Rt△BFO中,∵,∴Rt△AEO≌Rt△BFO(HL),∴∠A=∠B,∴△QAB為等腰三角形,又∵O為AB的中點,即AO=BO,∴QO⊥AB,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO,∴△QOF∽△QBO,∴∠B=∠QOF,同理可以得到∠A=∠QOE,∴∠QOF=∠QOE,根據(jù)切線長定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴,∴AD?BC=AO?OB=AB2,即xy=AB2為定值,設k=AB2,得到y(tǒng)=,則y與x滿足的函數(shù)關系式為反比例函數(shù)y=(k為常數(shù),k≠0,x>0).故選C.【點睛】本題屬于圓的綜合題,涉及的知識有:相似三角形的判定與性質(zhì),切線長定理,直角三角形全等的判定與性質(zhì),反比例函數(shù)的性質(zhì),以及等腰三角形的性質(zhì),做此題是注意靈活運用所學知識.6、C【解析】
根據(jù)因式分解法,可得答案.【詳解】解:因式分解,得(x-2)(x+1)=0,
于是,得x-2=0或x+1=0,
解得x1=-1,x2=2,
故選:C.【點睛】本題考查了解一元二次方程,熟練掌握因式分解法是解題關鍵.7、C【解析】
y隨x的增大而減小,可得一次函數(shù)y=kx+b單調(diào)遞減,k<0,又滿足kb<0,可得b>0,由此即可得出答案.【詳解】∵y隨x的增大而減小,∴一次函數(shù)y=kx+b單調(diào)遞減,∴k<0,∵kb<0,∴b>0,∴直線經(jīng)過第二、一、四象限,不經(jīng)過第三象限,故選C.【點睛】本題考查了一次函數(shù)的圖象和性質(zhì),熟練掌握一次函數(shù)y=kx+b(k≠0,k、b是常數(shù))的圖象和性質(zhì)是解題的關鍵.8、B【解析】
根據(jù)反比例函數(shù)的圖象和性質(zhì)結(jié)合矩形和三角形面積解答.【詳解】解:作,連接.∵四邊形AHEB,四邊形ECOH都是矩形,BE=EC,∴故選B.【點睛】此題重點考查學生對反比例函數(shù)圖象和性質(zhì)的理解,熟練掌握反比例函數(shù)圖象和性質(zhì)是解題的關鍵.9、D【解析】試題分析:根據(jù)題意得a≠1且△=,解得且a≠1.觀察四個答案,只有c=1一定滿足條件,故選D.考點:根的判別式;一元二次方程的定義.10、D【解析】【分析】先對括號內(nèi)的進行通分,進行分式的加減法運算,然后再進行分式的乘除法運算,最后把a-b=5整體代入進行求解即可.【詳解】(﹣2)?===a-b,當a-b=5時,原式=5,故選D.11、C【解析】
首先根據(jù)拋物線的開口方向可得到a<0,拋物線交y軸于正半軸,則c>0,而拋物線與x軸的交點中,﹣2<x1<﹣1、0<x2<1說明拋物線的對稱軸在﹣1~0之間,即x=﹣>﹣1,可根據(jù)這些條件以及函數(shù)圖象上一些特殊點的坐標來進行判斷【詳解】由圖知:拋物線的開口向下,則a<0;拋物線的對稱軸x=﹣>﹣1,且c>0;①由圖可得:當x=﹣2時,y<0,即4a﹣2b+c<0,故①正確;②已知x=﹣>﹣1,且a<0,所以2a﹣b<0,故②正確;③拋物線對稱軸位于y軸的左側(cè),則a、b同號,又c>0,故abc>0,所以③不正確;④由于拋物線的對稱軸大于﹣1,所以拋物線的頂點縱坐標應該大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正確;因此正確的結(jié)論是①②④.故選:C.【點睛】本題主要考查對二次函數(shù)圖象與系數(shù)的關系,拋物線與x軸的交點,二次函數(shù)圖象上點的坐標特征等知識點的理解和掌握,能根據(jù)圖象確定與系數(shù)有關的式子的正負是解此題的關鍵.12、B【解析】
首先過點A作AM⊥BC,根據(jù)三角形面積求出AM的長,得出直線BC與DE的距離,進而得出直線與圓的位置關系.【詳解】解:過點A作AM⊥BC于點M,交DE于點N,∴AM×BC=AC×AB,∴AM===2.1.∵D、E分別是AC、AB的中點,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.∵以DE為直徑的圓半徑為1.25,∴r=1.25>1.2,∴以DE為直徑的圓與BC的位置關系是:相交.故選B.【點睛】本題考查了直線和圓的位置關系,利用中位線定理得出BC到圓心的距離與半徑的大小關系是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、20【解析】
利用頻率估計概率,設原來紅球個數(shù)為x個,根據(jù)摸取30次,有10次摸到白色小球結(jié)合概率公式可得關于x的方程,解方程即可得.【詳解】設原來紅球個數(shù)為x個,則有=,解得,x=20,經(jīng)檢驗x=20是原方程的根.故答案為20.【點睛】本題考查了利用頻率估計概率和概率公式的應用,熟練掌握概率的求解方法以及分式方程的求解方法是解題的關鍵.14、【解析】分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應用平方差公式分解即可:.15、1【解析】【分析】根據(jù)根與系數(shù)的關系結(jié)合x1+x2=x1?x2可得出關于k的一元二次方程,解之即可得出k的值,再根據(jù)方程有實數(shù)根結(jié)合根的判別式即可得出關于k的一元二次不等式,解之即可得出k的取值范圍,從而可確定k的值.【詳解】∵x2﹣2kx+k2﹣k=0的兩個實數(shù)根分別是x1、x2,∴x1+x2=2k,x1?x2=k2﹣k,∵x12+x22=1,∴(x1+x2)2-2x1x2=1,(2k)2﹣2(k2﹣k)=1,2k2+2k﹣1=0,k2+k﹣2=0,k=﹣2或1,∵△=(﹣2k)2﹣1×1×(k2﹣k)≥0,k≥0,∴k=1,∴x1?x2=k2﹣k=0,∴x12﹣x1x2+x22=1﹣0=1,故答案為:1.【點睛】本題考查了根的判別式以及根與系數(shù)的關系,熟練掌握“當一元二次方程有實數(shù)根時,根的判別式△≥0”是解題的關鍵.16、﹣1【解析】
根據(jù)“方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù)”,利用一元二次方程根與系數(shù)的關系,列出關于m的等式,解之,再把m的值代入原方程,找出符合題意的m的值即可.【詳解】∵方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù),∴1﹣m2=0,解得:m=1或﹣1,把m=1代入原方程得:x2+2=0,該方程無解,∴m=1不合題意,舍去,把m=﹣1代入原方程得:x2=0,解得:x1=x2=0,(符合題意),∴m=﹣1,故答案為﹣1.【點睛】本題考查了根與系數(shù)的關系,正確掌握一元二次方程兩根之和,兩個之積與系數(shù)之間的關系式解題的關鍵.若x1,x2為方程的兩個根,則x1,x2與系數(shù)的關系式:,.17、5.【解析】試題分析:根據(jù)絕對值意義,正數(shù)的絕對值是它本身,負數(shù)的絕對值是它的相反數(shù),0的絕對值是0,所以-5的絕對值是5.故答案為5.考點:絕對值計算.18、﹣1.【解析】試題解析:∵,是方程的兩根,∴、,∴===﹣1.故答案為﹣1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=0.2x+14(0<x<35);(2)該公司至少需要投入資金16.4萬元.【解析】
(1)根據(jù)題意列出關于x、y的方程,整理得到y(tǒng)關于x的函數(shù)解析式;(2)解不等式求出x的范圍,根據(jù)一次函數(shù)的性質(zhì)計算即可.【詳解】解:(1)由題意得,0.6x+0.4×(35﹣x)=y,整理得,y=0.2x+14(0<x<35);(2)由題意得,35﹣x≤2x,解得,x≥,則x的最小整數(shù)為12,∵k=0.2>0,∴y隨x的增大而增大,∴當x=12時,y有最小值16.4,答:該公司至少需要投入資金16.4萬元.【點睛】本題考查的是一次函數(shù)的應用、一元一次不等式的應用,掌握一次函數(shù)的性質(zhì)是解題的關鍵.20、(1)k=10,b=3;(2).【解析】試題分析:(1)、將A點坐標代入反比例函數(shù)解析式和一次函數(shù)解析式分別求出k和b的值;(2)、首先根據(jù)一次函數(shù)求出點B的坐標,然后計算面積.試題解析:(1)、把x=2,y=5代入y=,得k==2×5=10把x=2,y=5代入y=x+b,得b=3(2)、∵y=x+3∴當y=0時,x=-3,∴OB=3∴S=×3×5=7.5考點:一次函數(shù)與反比例函數(shù)的綜合問題.21、(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.【解析】
(1)先把B點坐標代入代入y=,求出m得到反比例函數(shù)解析式,再利用反比例函數(shù)解析式確定A點坐標,然后利用待定系數(shù)法求一次函數(shù)解析式;(2)根據(jù)x軸上點的坐標特征確定C點坐標,然后根據(jù)三角形面積公式和△AOB的面積=S△AOC+S△BOC進行計算;(3)觀察函數(shù)圖象得到當﹣4<x<0或x>2時,一次函數(shù)圖象都在反比例函數(shù)圖象下方.【詳解】解:∵B(2,﹣4)在反比例函數(shù)y=的圖象上,∴m=2×(﹣4)=﹣8,∴反比例函數(shù)解析式為:y=﹣,把A(﹣4,n)代入y=﹣,得﹣4n=﹣8,解得n=2,則A點坐標為(﹣4,2).把A(﹣4,2),B(2,﹣4)分別代入y=kx+b,得,解得,∴一次函數(shù)的解析式為y=﹣x﹣2;(2)∵y=﹣x﹣2,∴當﹣x﹣2=0時,x=﹣2,∴點C的坐標為:(﹣2,0),△AOB的面積=△AOC的面積+△COB的面積=×2×2+×2×4=6;(3)由圖象可知,當﹣4<x<0或x>2時,一次函數(shù)的值小于反比例函數(shù)的值.【點睛】本題考查的是一次函數(shù)與反比例函數(shù)的交點問題以及待定系數(shù)法的運用,靈活運用待定系數(shù)法是解題的關鍵,注意數(shù)形結(jié)合思想的正確運用.22、(1)甲、乙兩隊合作完成這項工程需要36天;(2)甲、乙兩隊至多要合作7天【解析】
(1)設甲、乙兩隊合作完成這項工程需要x天,根據(jù)條件:甲隊先做5天,再由甲、乙合作9天,共完成總工作量的13(2)設甲、乙兩隊最多合作元天,先求出甲、乙兩隊合作一天完成工程的多少,再根據(jù)完成此項工程的工程款不超過190萬元,列出不等式,求解即可得出答案.【詳解】(1)設甲、乙兩隊合作完成這項工程需要x天根據(jù)題意得,560解得x=36,經(jīng)檢驗x=36是分式方程的解,答:甲、乙兩隊合作完成這項工程需要36天,(2)1設甲、乙需要合作y天,根據(jù)題意得,4+2.5y+2.5×解得y≤7答:甲、乙兩隊至多要合作7天.【點睛】本題考查了分式方程的應用和一元一次不等式的應用,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列方程求解,注意檢驗.23、(1)該車間應安排4天加工童裝,6天加工成人裝;(2)36000元.【解析】
(1)利用某車間計劃用10天加工一批出口童裝和成人裝共360件,分別得出方程組成方程組求出即可;(2)利用(1)中所求,分別得出兩種服裝獲利即可得出答案.【詳解】解:(1)設該車間應安排x天加工童裝,y天加工成人裝,由題意得:,解得:,答:該車間應安排4天加工童裝,6天加工成人裝;(2)∵45×4=180,30×6=180,∴180×80+180×120=180×(80+120)=36000(元),答:該車間加工完這批服裝后,共可獲利36000元.【點睛】本題考查二元一次方程組的應用.24、,1【解析】
先通分得到,再根據(jù)平方差公式和完全平方公式得到,化簡后代入a=3,計算即可得到答案.【詳解】原式===,當a=3時(a≠﹣1,0),原式=1.【點睛】本題考查代數(shù)式的化簡、平方差公式和完全平方公式,解題的關鍵是掌握代數(shù)式的化簡、平方差公式和完全平方公式.25、(1)種植A種生姜14畝,種植B種生姜16畝;(2)種植A種生姜10畝,種植B種生姜20畝時,全部收購該基地生姜的年總收入最多,最多為510000元.【解析】試題分析:(1)設該基地種植A種生姜x畝,那么種植B種生姜(30-x)畝,根據(jù):A種生姜的產(chǎn)量+B種生姜的產(chǎn)量=總產(chǎn)量,列方程求解;(2)設A種生姜x畝,根據(jù)A種生姜的畝數(shù)不少于B種的一半,列不等式求x的取值范圍,再根據(jù)(1)的等量關系列出函數(shù)關系式,在x的取值范圍內(nèi)求總產(chǎn)量的最大值.試題解析:(1)設該基地種植A種生姜x畝,那么種植B種生姜(30-x)畝,根據(jù)題意,2000x+2500(30-x)=68000,解得x=14,∴30-x=16,答:種植A種生姜14畝,種植B種生
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 抵押合同范文編寫注意事項
- 2024房產(chǎn)抵押借款合同書2
- 保密合作協(xié)議書格式
- 2024年可打印協(xié)議書
- 固定收益證券綜合交易協(xié)議范例
- 2023年高考地理復習精題精練-地貌(解析版)
- 建筑施工領域農(nóng)民工勞動合同模板
- 旅行社單項委托合同格式
- 城市道路工程合同范例
- 商標許可協(xié)議書格式
- 建筑CAD平面圖信息化大賽教學教案
- 《工業(yè)和民用燃料煤》地方標準發(fā)布
- 第一節(jié)細菌和真菌的分布ppt
- 海尼曼G1內(nèi)容梳理(2)
- 混凝土攪拌站應急預案 (2)
- 液壓系統(tǒng)的課程設計說明書.doc
- 新版atstudy系統(tǒng)測試計劃
- 求異思維換個度
- 礦山改造電氣節(jié)能降耗分析
- 村級財務清理報告
- (完整版)工業(yè)與民用配電設計手冊(總27頁)
評論
0/150
提交評論