版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河北省永年縣一中2025屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在下列命題中正確的是()A.已知是空間三個向量,則空間任意一個向量總可以唯一表示為B.若所在的直線是異面直線,則不共面C.若三個向量兩兩共面,則共面D.已知A,B,C三點不共線,若,則A,B,C,D四點共面2.若點在橢圓上,則該橢圓的離心率為()A. B.C. D.3.已知雙曲線的離心率為2,則()A.2 B.C. D.14.下列說法中正確的是()A.棱柱的側(cè)面可以是三角形B.棱臺的所有側(cè)棱延長后交于一點C.所有幾何體的表面都能展開成平面圖形D.正棱錐的各條棱長都相等5.已知函數(shù).設(shè)命題的定義域為,命題的值域為.若為真,為假,則實數(shù)的取值范圍是()A. B.C. D.6.若命題為“,”,則為()A., B.,C., D.,7.已知分別是等差數(shù)列的前項和,且,則()A. B.C. D.8.已知曲線的方程為,則下列說法正確的是()①曲線關(guān)于坐標(biāo)原點對稱;②曲線是一個橢圓;③曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積.A.① B.①②C.③ D.①③9.設(shè),則曲線在點處的切線的傾斜角是()A. B.C. D.10.設(shè)分別為圓和橢圓上的點,則兩點間的最大距離是A. B.C. D.11.將的展開式按x的降冪排列,第二項不大于第三項,若,且,則實數(shù)x的取值范圍是()A. B.C. D.12.在空間直角坐標(biāo)系中,為直線的一個方向向量,為平面的一個法向量,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一道數(shù)學(xué)難題,在半小時內(nèi),甲能解決的概率是,乙能解決的概率是,兩人試圖獨立地在半小時內(nèi)解決它,則問題得到解決的概率是________.14.若p:存在,使是真命題,則實數(shù)a的取值范圍是______15.用組成所有沒有重復(fù)數(shù)字的五位數(shù)中,滿足與相鄰并且與不相鄰的五位數(shù)共有____________個.(結(jié)果用數(shù)值表示)16.已知數(shù)列滿足:,,,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)橢圓的離心率為,設(shè)為坐標(biāo)原點,為橢圓的左頂點,動直線過線段的中點,且與橢圓相交于、兩點.已知當(dāng)直線的傾斜角為時,(1)求橢圓的標(biāo)準(zhǔn)方程;(2)是否存在定直線,使得直線、分別與相交于、兩點,且點總在以線段為直徑的圓上,若存在,求出所有滿足條件的直線的方程;若不存在,請說明理由18.(12分)已知點為橢圓C的右焦點,P為橢圓上一點,且(O為坐標(biāo)原點),.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)經(jīng)過點的直線l與橢圓C交于A,B兩點,求弦的取值范圍.19.(12分)設(shè):實數(shù)滿足,:實數(shù)滿足(1)若,且為真,求實數(shù)的取值范圍;(2)若是的必要不充分條件,求實數(shù)的取值范圍20.(12分)已知直線,以點為圓心的圓C與直線l相切(1)求圓C的標(biāo)方程;(2)過點的直線交圓C于A,B兩點,且,求的方程21.(12分)如圖,在長方體中,,若點P為棱上一點,且,Q,R分別為棱上的點,且.(1)求直線與平面所成角的正弦值;(2)求平面與平面的夾角的余弦值.22.(10分)如圖四棱錐P-ABCD中,面PDC⊥面ABCD,∠ABC=∠DCB=,CD=2AB=2BC=2,△PDC是等邊三角形.(1)設(shè)面PAB面PDC=l,證明:l//平面ABCD;(2)線段PC內(nèi)是否存在一點E,使面ADE與面ABCD所成角的余弦值為,如果存在,求λ=的值,如果不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】對于A,利用空間向量基本定理判斷,對于B,利用向量的定義判斷,對于C,舉例判斷,對于D,共面向量定理判斷【詳解】對于A,若三個向量共面,在平面,則空間中不在平面的向量不能用表示,所以A錯誤,對于B,因為向量是自由向量,是可以自由平移,所以當(dāng)所在的直線是異面直線時,有可能共面,所以B錯誤,對于C,當(dāng)三個向量兩兩共面時,如空間直角坐標(biāo)系中的3個基向量兩兩共面,但這3個向量不共面,所以C錯誤,對于D,因為A,B,C三點不共線,,且,所以A,B,C,D四點共面,所以D正確,故選:D2、C【解析】根據(jù)給定條件求出即可計算橢圓的離心率.【詳解】因點在橢圓,則,解得,而橢圓長半軸長,所以橢圓離心率.故選:C3、D【解析】由雙曲線的性質(zhì),直接表示離心率,求.【詳解】由雙曲線方程可知,因為,所以,解得:,又,所以.故選:D【點睛】本題考查雙曲線基本性質(zhì),意在考查數(shù)形結(jié)合分析問題和解決問題能力,屬于中檔題型,一般求雙曲線離心率的方法:
直接法:直接求出,然后利用公式求解;2.公式法:,3.構(gòu)造法:根據(jù)條件,可構(gòu)造出的齊次方程,通過等式兩邊同時除以,進而得到關(guān)于的方程.4、B【解析】根據(jù)棱柱、棱臺、球、正棱錐結(jié)構(gòu)特征依次判斷選項即可.【詳解】棱柱的側(cè)面都是平行四邊形,A不正確;棱臺是由對應(yīng)的棱錐截得的,B正確;不是所有幾何體的表面都能展開成平面圖形,例如球不能展開成平面圖形,C不正確;正棱錐的各條棱長并不是都相等,應(yīng)該為正棱錐的側(cè)棱長都相等,所以D不正確.故選:B.5、C【解析】根據(jù)一元二次不等式恒成立和二次函數(shù)值域可求得為真命題時的取值范圍,根據(jù)和的真假性可知一真一假,分類討論可得結(jié)果.【詳解】若命題為真,則在上恒成立,,;若命題為真,則的值域包含,則或,;為真,為假,一真一假,若真假,則;若假真,則;綜上所述:實數(shù)的取值范圍為.故選:C.6、B【解析】特稱命題的否定是全稱命題,把存在改為任意,把結(jié)論否定.【詳解】“,”的否命題為“,”,故選:B7、D【解析】利用及等差數(shù)列的性質(zhì)進行求解.【詳解】分別是等差數(shù)列的前項和,故,且,故,故選:D8、D【解析】對于①在方程中換為,換為可判斷;對于②分析曲線的圖形是兩個拋物線的部分組成的可判斷;對于③在第一象限內(nèi),分析橢圓的圖形與曲線圖形的位置關(guān)系可判斷.【詳解】在曲線的方程中,換為,換為,方程不變,故曲線關(guān)于坐標(biāo)原點對稱所以①正確,當(dāng)時,曲線的方程化為,此時當(dāng)時,曲線的方程化為,此時所以曲線圖形是兩個拋物線的部分組成的,不是橢圓,故②不正確.當(dāng),時,設(shè),設(shè),則,(當(dāng)且僅當(dāng)或時等號成立)所以在第一象限內(nèi),橢圓的圖形在曲線的上方.根據(jù)曲線和橢圓的的對稱性可得橢圓的圖形在曲線的外部(四個頂點在曲線上)所以曲線圍成區(qū)域的面積小于橢圓圍成區(qū)域的面積,故③正確.故選:D9、C【解析】根據(jù)導(dǎo)數(shù)的概念可得,再利用導(dǎo)數(shù)的幾何意義即可求解.【詳解】因為,所以,則曲線在點處的切線斜率為,故所求切線的傾斜角為.故選:C10、D【解析】轉(zhuǎn)化為圓心到橢圓上點的距離的最大值加(半徑).【詳解】設(shè),圓心為,則,當(dāng)時,取到最大值,∴最大值為故選:D.【點睛】本題考查圓上點與橢圓上點的距離的最值問題,解題關(guān)鍵是圓上的點轉(zhuǎn)化為圓心,利用圓心到動點距離的最值加(或減)半徑得出結(jié)論11、A【解析】按照二項展開式展開表示出第二項第三項,解不等式即可.【詳解】由二項展開式,第二項為:,第三項為:,依題意,兩邊約去得到,即,由知,則,同時約去得到.故選:A.12、B【解析】由已知條件得出,結(jié)合空間向量數(shù)量積的坐標(biāo)運算可求得實數(shù)的值.【詳解】因為,則,解得.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分甲解決乙不能解決,甲不能解決乙能解決,甲能解決乙也能解決三類,利用獨立事件的概率求解.【詳解】因為甲能解決的概率是,乙能解決的概率是,所以問題得到解決的概率是,故答案為:14、【解析】將問題分離參數(shù)得到存在,使成立,可得結(jié)論.【詳解】存在,使,即存在,使,所以故答案為:15、【解析】由題意,先利用捆綁法排列和,再利用插空法排列和,即可得答案.【詳解】因為滿足與相鄰并且與不相鄰,則將捆綁,內(nèi)部排序得,再對和全排列得,利用插空法將和插空得,所以滿足題意得五位數(shù)有.故答案為:16、.【解析】運用累和法,結(jié)合等差數(shù)列前項和公式進行求解即可.【詳解】因為,,所以當(dāng)時,有,因此有:,即,當(dāng)時,適合上式,所以,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,且直線的方程為或【解析】(1)分析可知,,直線的方程為,設(shè)點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,利用弦長公式可求得的值,即可得出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點、,設(shè)直線的方程為,將該直線方程與橢圓的方程聯(lián)立,列出韋達定理,求出點、,由已知得出,求出的值,即可得出結(jié)論.【小問1詳解】解:因為,則,,所以,橢圓的方程為,即,易知點,則點,當(dāng)直線的傾斜角為時,直線的方程為,設(shè)點、,聯(lián)立,可得,,由韋達定理可得,,所以,,解得,則,,因此,橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】解:易知點,若直線與軸重合,則、為橢圓長軸的兩個端點,不合乎題意.設(shè)直線的方程為,設(shè)點、,聯(lián)立,可得,,由韋達定理可得,,直線的斜率為,直線的方程為,故點,同理可得點,,,由題意可得,解得或.因此,存在滿足題設(shè)條件的直線,且直線的方程為或,點總在以線段為直徑的圓上.【點睛】方法點睛:利用韋達定理法解決直線與圓錐曲線相交問題的基本步驟如下:(1)設(shè)直線方程,設(shè)交點坐標(biāo)為、;(2)聯(lián)立直線與圓錐曲線的方程,得到關(guān)于(或)的一元二次方程,必要時計算;(3)列出韋達定理;(4)將所求問題或題中的關(guān)系轉(zhuǎn)化為、(或、)的形式;(5)代入韋達定理求解.18、(1)(2)【解析】(1)利用橢圓定義求得橢圓的即可解決;(2)經(jīng)過點的直線l分為斜率不存在和存在兩種情況,分別去求弦,再去求其取值范圍即可.【小問1詳解】由題意得.記左焦點為,,則,,解得.由橢圓定義得:,則,所以橢圓C的方程為:.【小問2詳解】①當(dāng)直線l的斜率不存在時,.②當(dāng)直線l的斜率存在時,設(shè)斜率為k,則l的方程為.聯(lián)立橢圓與直線的方程(由于點在橢圓內(nèi),∴成立),且,,令,則,,,由得,綜上所述,弦的取值范圍為.【點睛】(1)解答直線與橢圓的題目時,時常把兩個曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系(2)涉及到直線方程的設(shè)法時,務(wù)必考慮全面,不要忽略直線斜率為0或不存在等特殊情形19、(1)(2)【解析】(1)根據(jù)二次不等式與分式不等式的求解方法求得命題p,q為真時實數(shù)x的取值范圍,再求交集即可;(2)先求得,再根據(jù)是的必要不充分條件可得,再根據(jù)集合包含關(guān)系,根據(jù)區(qū)間端點列不等式求解即可【小問1詳解】當(dāng)時,,解得,即p為真時,實數(shù)x的取值范圍為.由,解得,即q為真時,實數(shù)x的取值范圍為若為真,則,解得實數(shù)x的取值范圍為【小問2詳解】若p是q的必要不充分條件,則且設(shè),,則,又由,得,因為,則,有,解得因此a的取值范圍為20、(1)(2)或【解析】(1)根據(jù)點到直線的距離公式求出半徑,即可得到圓C的標(biāo)方程;(2)根據(jù)弦長公式可求出圓心C到直線的距離,再根據(jù)點到直線的距離公式結(jié)合分類討論思想即可求出【小問1詳解】設(shè)圓C的半徑為r,∵C與l相切,∴,∴圓C的標(biāo)準(zhǔn)方程為【小問2詳解】由可得圓心C到直線的距離∴當(dāng)?shù)男甭什淮嬖跁r,其方程為,此時圓心到的距離為3,符合條件;當(dāng)?shù)男甭蚀嬖跁r,設(shè),圓心C到直線的距離,解得,此時的方程為,即綜上,的方程為或21、(1)(2)【解析】(1)建立如圖所示的空間直角坐標(biāo)系,用空間向量法求線面角;(2)用空間向量法求二面角【小問1詳解】以D為坐標(biāo)原點,射線方向為x,y,z軸正方向建立空間直角坐標(biāo)系.當(dāng)時,,所以,設(shè)平面的法向量為,所以,即不妨得,,又,所以,則【小問2詳解】在長方體中,因為平面,所以平面平面,因為平面與平面交于,因為四邊形為正方形,所以,所以平面,即為平面的一個法向量,,所以,又平面的法向量為,所以.22、(1)證明見解析(2)存在【解析】(1)由已知可得∥,再由線面平行的判定可得∥平面,再由線面平行的性質(zhì)可得∥,再由線面平行的判定可得結(jié)論,(2)由已知條件可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度農(nóng)家樂餐飲服務(wù)與食材供應(yīng)合同4篇
- 2025年度電力設(shè)施維護司機派遣服務(wù)合同4篇
- 2025年度企業(yè)員工短期培訓(xùn)費支付標(biāo)準(zhǔn)合同
- 二零二五年度新能源車輛采購配送及運營服務(wù)合同3篇
- 二零二五年度企業(yè)法律顧問提前終止服務(wù)合同協(xié)議書
- 二零二五年度城市綠化項目臨時綠化員聘用合同4篇
- 2025年度個人與企業(yè)貸款融資合作協(xié)議合同范本4篇
- 2025版門面轉(zhuǎn)讓合同范本:商業(yè)地產(chǎn)經(jīng)營權(quán)轉(zhuǎn)讓詳細協(xié)議
- 課題申報參考:南水北調(diào)中線水源區(qū)家庭農(nóng)場耕地生態(tài)保護行為形成邏輯與實現(xiàn)機制研究
- 2025年度美容院美容護理產(chǎn)品代工合同4篇
- 定額〔2025〕1號文-關(guān)于發(fā)布2018版電力建設(shè)工程概預(yù)算定額2024年度價格水平調(diào)整的通知
- 2024年城市軌道交通設(shè)備維保及安全檢查合同3篇
- 電力溝施工組織設(shè)計-電纜溝
- 【教案】+同一直線上二力的合成(教學(xué)設(shè)計)(人教版2024)八年級物理下冊
- 湖北省武漢市青山區(qū)2023-2024學(xué)年七年級上學(xué)期期末質(zhì)量檢測數(shù)學(xué)試卷(含解析)
- 單位往個人轉(zhuǎn)賬的合同(2篇)
- 電梯操作證及電梯維修人員資格(特種作業(yè))考試題及答案
- 科研倫理審查與違規(guī)處理考核試卷
- GB/T 44101-2024中國式摔跤課程學(xué)生運動能力測評規(guī)范
- 鍋爐本體安裝單位工程驗收表格
- 高危妊娠的評估和護理
評論
0/150
提交評論