2025屆四川省天府名校高二上數(shù)學期末聯(lián)考試題含解析_第1頁
2025屆四川省天府名校高二上數(shù)學期末聯(lián)考試題含解析_第2頁
2025屆四川省天府名校高二上數(shù)學期末聯(lián)考試題含解析_第3頁
2025屆四川省天府名校高二上數(shù)學期末聯(lián)考試題含解析_第4頁
2025屆四川省天府名校高二上數(shù)學期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆四川省天府名校高二上數(shù)學期末聯(lián)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線被圓截得的弦長為()A.1 B.C.2 D.32.若圓C與直線:和:都相切,且圓心在y軸上,則圓C的方程為()A. B.C. D.3.某研究所計劃建設n個實驗室,從第1實驗室到第n實驗室的建設費用依次構成等差數(shù)列,已知第7實驗室比第2實驗室的建設費用多15萬元,第3實驗室和第6實驗室的建設費用共為61萬元.現(xiàn)在總共有建設費用438萬元,則該研究所最多可以建設的實驗室個數(shù)是()A.10 B.11C.12 D.134.曲線上的點到直線的最短距離是()A. B.C. D.15.已知中,角,,的對邊分別為,,,且,,成等比數(shù)列,則這個三角形的形狀是()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.鈍角三角形6.與圓和圓都外切的圓的圓心在()A.一個圓上 B.一個橢圓上C.雙曲線的一支上 D.一條拋物線上7.數(shù)學中的數(shù)形結合也可以組成世間萬物的絢麗畫面,-些優(yōu)美的曲線是數(shù)學形象美、對稱美、和諧美的產(chǎn)物.曲線C:為四葉玫瑰線.①方程(xy<0)表示的曲線在第二和第四象限;②曲線C上任一點到坐標原點0的距離都不超過2;③曲線C構成的四葉玫瑰線面積大于4π;④曲線C上有5個整點(橫、縱坐標均為整數(shù)的點).則上述結論中正確的個數(shù)是()A.1 B.2C.3 D.48.阿基米德不僅是著名的物理學家,也是著名的數(shù)學家,他利用“逼近法”得到橢圓的面積公式,設橢圓的長半軸長、短半軸長分別為,則橢圓的面積公式為,若橢圓的離心率為,面積為,則橢圓的標準方程為()A.或 B.或C.或 D.或9.已知圓M的圓心在直線上,且點,在M上,則M的方程為()A. B.C. D.10.已知橢圓的離心率,為橢圓上的一個動點,若定點,則的最大值為A. B.C. D.11.已知實數(shù)、滿足,則的最大值為()A. B.C. D.12.在中,a,b,c分別為角A,B,C的對邊,已知,,的面積為,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若在數(shù)列的每相鄰兩項之間插入此兩項的和,可形成新的數(shù)列,再把所得數(shù)列按照同樣的方法不斷進行構造,又可以得到新的數(shù)列.現(xiàn)將數(shù)列1,2進行構造,第1次得到數(shù)列1,3,2;第2次得到數(shù)列1,4,3,5,2;依次構造,第次得到數(shù)列1,,,,…,,2;記則______,設數(shù)列的前n項和為,則______14.以拋物線C的頂點為圓心的圓交C于、兩點,交C的準線于、兩點.,,則C的焦點到準線的距離為____.15.若,,,,與,,,,,,均為等差數(shù)列,則______16.設數(shù)列的前n項和為,且是6和的等差中項,若對任意的,都有,則的最小值為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,四邊形是直角梯形,,,,為等邊三角形.(1)證明:;(2)求點到平面的距離.18.(12分)函數(shù)(1)求在上的單調(diào)區(qū)間;(2)當時,不等式恒成立,求實數(shù)a的取值范圍19.(12分)如圖,四棱錐P-ABCD中,PA⊥平面ABCD,O為底面正方形ABCD對角線的交點,E為PD的中點,且PA=AD.(1)求證:PB∥平面EAC;(2)求直線BD與平面EAC所成角的正弦值.20.(12分)某城鎮(zhèn)為推進生態(tài)城鎮(zhèn)建設,對城鎮(zhèn)的生態(tài)環(huán)境、市容市貌等方面進行了全面治理,為了解城鎮(zhèn)居民對治理情況的評價和建議,現(xiàn)隨機抽取了200名居民進行問卷并評分(滿分100分),將評分結果制成如下頻率分布直方圖,已知圖中a,b,c成等比數(shù)列,且公比為2(1)求圖中a,b,c的值,并估計評分的均值(各段分數(shù)用該段中點值作代表);(2)根據(jù)統(tǒng)計數(shù)據(jù),在評分為“50~60”和“80~90”的居民中用分層抽樣的方法抽取了6個居民.若從這6個居民中隨機選擇2個參加座談,求所抽取的2個居民中至少有1個評分在“80~90”的概率21.(12分)如圖甲,在直角三角形中,已知,,,D,E分別是的中點.將沿折起,使點A到達點的位置,且,連接,得到如圖乙所示的四棱錐,M為線段上一點.(1)證明:平面平面;(2)過B,C,M三點的平面與線段A'E相交于點N,從下列三個條件中選擇一個作為已知條件,求直線DN與平面A'BC所成角的正弦值.①;②直線與所成角的大小為;③三棱錐的體積是三棱錐體積的注:如果選擇多個條件分別解答,按第一個解答計分.22.(10分)某高中招聘教師,首先要對應聘者的簡歷進行篩選,簡歷達標者進入面試,面試環(huán)節(jié)應聘者要回答3道題,第一題為教育心理學知識,答對得4分,答錯得0分,后兩題為學科專業(yè)知識,每道題答對得3分,答錯得0分(1)甲、乙、丙、丁、戊來應聘,他們中僅有3人的簡歷達標,若從這5人中隨機抽取3人,求這3人中恰有2人簡歷達標的概率;(2)某進入面試的應聘者第一題答對的概率為,后兩題答對的概率均為,每道題答對與否互不影響,求該應聘者的面試成績X的分布列及數(shù)學期望

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用直線和圓相交所得的弦長公式直接計算即可.【詳解】由題意可得圓的圓心為,半徑,則圓心到直線的距離,所以由直線和圓相交所得的弦長公式可得弦長為:.故選:C.2、B【解析】首先求出兩平行直線間的距離,即可求出圓的半徑,設圓心坐標為,,利用圓心到直線的距離等于半徑得到方程,求出的值,即可得解;【詳解】解:因為直線:和:的距離,由圓C與直線:和:都相切,所以圓的半徑為,又圓心在軸上,設圓心坐標為,,所以圓心到直線的距離等于半徑,即,所以或(舍去),所以圓心坐標為,故圓的方程為;故選:B3、C【解析】根據(jù)等差數(shù)列通項公式,列出方程組,求出的值,進而求出令根據(jù)題意令,即可求解.【詳解】設第n實驗室的建設費用為萬元,其中,則為等差數(shù)列,設公差為d,則由題意可得,解得,則.令,即,解得,又,所以,,所以最多可以建設12個實驗室.故選:C.4、B【解析】先求與平行且與相切的切線切點,再根據(jù)點到直線距離公式得結果.【詳解】設與平行的直線與相切,則切線斜率k=1,∵∴,由,得當時,即切點坐標為P(1,0),則點(1,0)到直線的距離就是線上的點到直線的最短距離,∴點(1,0)到直線的距離為:,∴曲線上的點到直線l:的距離的最小值為.故選:B5、B【解析】根據(jù)題意求出,結合余弦定理分情況討論即可.【詳解】解:因為,所以.由題意得,利用余弦定理得:.當,即時,,即,解得:.此時三角形為等邊三角形;當,即時,,不成立.所以三角形的形狀是等邊三角形.故選:B.【點睛】本題主要考查利用余弦定理判斷三角形的形狀,屬于基礎題.6、C【解析】設動圓的半徑為,然后根據(jù)動圓與兩圓都外切得,再兩式相減消去參數(shù),則滿足雙曲線的定義,即可求解.【詳解】設動圓的圓心為,半徑為,而圓的圓心為,半徑為1;圓的圓心為,半徑為2依題意得,則,所以點的軌跡是雙曲線的一支故選:C7、B【解析】對于①,由判斷,對于②,利用基本不等式可判斷,對于③,以為圓心,2為半徑的圓的面積與曲線圍成的面積進行比較即可,對于④,將和聯(lián)立,求解出兩曲線的切點,從而可判斷【詳解】對于①,由,得異號,方程(xy<0)關于原點及y=x對稱,所以方程(xy<0)表示的曲線在第二和第四象限,所以①正確,對于②,因為,所以,所以,所以,所以由曲線的對稱性可知曲線C上任一點到坐標原點0的距離都不超過2,所以②正確,對于③,由②可知曲線C上到原點的距離不超過2,而以為圓心,2為半徑的圓的面積為,所以曲線C構成的四葉玫瑰線面積小于4π,所以③錯誤,對于④,將和聯(lián)立,解得,所以可得圓與曲線C相切于點,,,,而點(1,1)不滿足曲線方程,所以曲線在第一象限不經(jīng)過任何整數(shù)點,由曲線的對稱性可知曲線在其它象限也不經(jīng)過任何整數(shù)點,所以曲線C上只有1個整點(0,0),所以④錯誤,故選:B8、B【解析】根據(jù)題意列出的關系式,即可求得,再分焦點在軸與軸兩種情況寫出標準方程.【詳解】根據(jù)題意,可得,所以橢圓的標準方程為或.故選:B9、C【解析】由題設寫出的中垂線,求其與的交點即得圓心坐標,再應用兩點距離公式求半徑,即可得圓的方程.【詳解】因為點,在M上,所以圓心在的中垂線上由,解得,即圓心為,則半徑,所以M的方程為故選:C10、C【解析】首先求得橢圓方程,然后確定的最大值即可.【詳解】由題意可得:,據(jù)此可得:,橢圓方程為,設橢圓上點的坐標為,則,故:,當時,.本題選擇C選項.【點睛】本題主要考查橢圓方程問題,橢圓中的最值問題等知識,意在考查學生的轉化能力和計算求解能力.11、A【解析】作出可行域,利用代數(shù)式的幾何意義,利用數(shù)形結合可求得的最大值.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立可得,即點,代數(shù)式的幾何意義是連接可行域內(nèi)一點與定點連線的斜率,由圖可知,當點在可行域內(nèi)運動時,直線的傾斜角為銳角,當點與點重合時,直線的傾斜角最大,此時取最大值,即.故選:A.12、C【解析】利用面積公式,求出,進而求出,利用余弦定理求出,再利用正弦定理求出【詳解】由面積公式得:,因為的面積為,所以,求得:因,所以由余弦定理得:所以由正弦定理得:,即,解得:故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①.81②.【解析】根據(jù)數(shù)列的構造寫出前面幾次得到的新數(shù)列,尋找規(guī)律,構造等比數(shù)列,求出通項公式,再進行求和.【詳解】第1次得到數(shù)列1,3,2,此時;第2次得到數(shù)列1,4,3,5,2,此時;第3次得到數(shù)列1,5,4,7,3,8,5,7,2,此時;第4次得到數(shù)列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此時,故81,且故,又,所以數(shù)列是以為首項,公比為3的等比數(shù)列,所以,故,所以故答案為:81,14、2【解析】畫出圖形,設出拋物線方程,利用勾股定理以及圓的半徑列出方程求解即可.【詳解】解:設拋物線為y2=2px,如圖:,又,解得,設圓的半徑為,,解得:p=2,即C的焦點到準線的距離為:2.故答案為:2.15、##【解析】由題意利用等差數(shù)列的定義和通項公式,求得要求式子的值【詳解】設等差數(shù)列,,,,的公差為,等差數(shù)列,,,,,,的公差為,則有,且,所以,則,故答案為:16、【解析】先根據(jù)和項與通項關系得通項公式,再根據(jù)等比數(shù)列求和公式得,再根據(jù)函數(shù)單調(diào)性得取值范圍,即得取值范圍,解得結果.【詳解】因為是6和的等差中項,所以當時,當時,因此當為偶數(shù)時,當為奇數(shù)時,因此因為在上單調(diào)遞增,所以故答案為:【點睛】本題考查根據(jù)和項求通項、等比數(shù)列定義、等比數(shù)列求和公式、利用函數(shù)單調(diào)性求值域,考查綜合分析求解能力,屬較難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)略;(2)【解析】(1)推導出BD⊥BC,PB⊥BC,從而BC⊥平面PBD,由此能證明PD⊥BC.(2)利用等體積求得點B到面的距離【詳解】(1)∵在四棱錐P﹣ABCD中,四邊形ABCD是直角梯形,DC=2AD=2AB=2,∠DAB=∠ADC=90°,PB,△PDC為等邊三角形∴BC=BD,∴BD2+BC2=CD2,PB2+BC2=PC2,∴BD⊥BC,PB⊥BC,∵BD∩PB=B,∴BC⊥平面PBD,∵PD?平面PBD,∴PD⊥BC(2)由(1)知,,故故得點B到面PCD的距離為【點睛】本題考查線線垂直的證明,考查點面距離的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題18、(1)單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為和(2)【解析】(1)求出,然后可得答案;(2)由條件可得,設,則,然后利用導數(shù)可得在上單調(diào)遞增,,然后分、兩種情況討論求解即可.【小問1詳解】由題可得令,得;令,得,所以f(x)的單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為和【小問2詳解】由,得,即設,則設,則當時,,,所以所以即在上單調(diào)遞增,則若,則,所以h(x)在上單調(diào)遞增所以h(x)≥h(0)=0恒成立,符合題意若a>2,則,必存在正實數(shù),滿足:當時,,h(x)單調(diào)遞減,此時h(x)<h(0)=0,不符合題意綜上所述,a的取值范圍是19、(1)證明見解析(2)【解析】(1)利用線面平行的判斷定理,證明線線平行,即可證明;(2)建立空間直角坐標系,求平面的法向量,利用公式,即可求解.【小問1詳解】連結EO,由題意可得O為BD的中點,又E是PD的中點,∴PB∥EO,又∵EO平面EAC,PB平面EAC,∴PB∥平面EAC;【小問2詳解】如圖,以A為原點,AB、AD、AP所在直線分別為x軸、y軸、z軸,建立空間直角坐標系,設AD=2,則A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,1,1),∴=(-2,2,0),=(0,1,1),=(2,2,0),設平面EAC的法向量為=(x,y,z),則,即,即,令y=1得x=-1,z=-1,∴平面EAC的一個法向量為=(-1,1,-1),∴設直線BD與平面EAC所成的角為θ,則sinθ=∴直線BD與平面EAC所成的角的正弦值.20、(1),,,均值為65.6(2)【解析】(1)根據(jù)a,b,c成等比數(shù)列且公比為2,得到a,b,c的關系,利用頻率之和為1,求出a,b,c,估計評分的均值;(2)利用列舉法得到基本事件,求出相應的概率.【小問1詳解】由題意得,,,有,所以,即,解得,于是,評分在40~50,50~60,60~70,70~80,80~90,90~100的概率分別為0.15,0.20,0.30,0.20,0.10,0.05,則均分估計值為【小問2詳解】評分在“50~60”和“80~90”分別有40人和20人則所抽取的6個居民中,評分在“80~90”一組有2人,記為A1,A2,評分在“50~60”一組4人,記為B1,B2,B3,B4從這6人中選取2人的所有基本事件有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論