2025屆山東省聊城市茌平縣第二中學(xué)高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
2025屆山東省聊城市茌平縣第二中學(xué)高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
2025屆山東省聊城市茌平縣第二中學(xué)高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
2025屆山東省聊城市茌平縣第二中學(xué)高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
2025屆山東省聊城市茌平縣第二中學(xué)高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆山東省聊城市茌平縣第二中學(xué)高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是定義在上的奇函數(shù),對任意兩個不相等的正數(shù)、都有,記,,,則()A. B.C. D.2.若圓上至少有三個點到直線的距離為1,則半徑的取值范圍是()A. B.C. D.3.圓()上點到直線的最小距離為1,則A.4 B.3C.2 D.14.經(jīng)過點且與雙曲線有共同漸近線的雙曲線方程為()A. B.C. D.5.雙曲線的一條漸近線方程為,則雙曲線的離心率為()A.2 B.5C. D.6.在等差數(shù)列中,若,則()A.5 B.6C.7 D.87.已知,是雙曲線的左、右焦點,點A是的左頂點,為坐標(biāo)原點,以為直徑的圓交的一條漸近線于、兩點,以為直徑的圓與軸交于兩點,且平分,則雙曲線的離心率為()A. B.2C. D.38.已知函數(shù)的定義域為,其導(dǎo)函數(shù)為,若,則下列式子一定成立的是()A. B.C. D.9.在等比數(shù)列中,,,則等于()A. B.5C. D.910.命題p:存在一個實數(shù)﹐它的絕對值不是正數(shù).則下列結(jié)論正確的是()A.:任意實數(shù),它的絕對值是正數(shù),為假命題B.:任意實數(shù),它的絕對值不是正數(shù),為假命題C.:存在一個實數(shù),它的絕對值是正數(shù),為真命題D.:存在一個實數(shù),它的絕對值是負(fù)數(shù),為真命題11.給出命題:若函數(shù)是冪函數(shù),則函數(shù)的圖象不過第四象限.在它的逆命題、否命題、逆否命題三個命題中,真命題的個數(shù)是()A.3 B.2C.1 D.012.已知、是平面直角坐標(biāo)系上的直線,“與的斜率相等”是“與平行”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分條件也非必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)設(shè)上存在極大值M,證明:.14.已知,分別是橢圓和雙曲線的離心率,,是它們的公共焦點,M是它們的一個公共點,且,則的最大值為______15.過點作斜率為的直線與橢圓相交于、兩個不同點,若是的中點,則該橢圓的離心率___________.16.已知點,平面過,,三點,則點到平面的距離為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓焦距為,點在橢圓C上(1)求橢圓C的方程;(2)過點的直線與C交于M,N兩點,點R是直線上任意一點,設(shè)直線的斜率分別為,若,求的方程18.(12分)已知的內(nèi)角A,B,C所對的邊分別為a,b,c,且(1)求B;(2)若,求的面積的最大值19.(12分)已知數(shù)列滿足,.(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的通項公式及前項的和.20.(12分)已知函數(shù)是定義在實數(shù)集上的奇函數(shù),且當(dāng)時,(1)求的解析式;(2)若在上恒成立,求的取值范圍21.(12分)已知直線l過定點(1)若直線l與直線垂直,求直線l的方程;(2)若直線l在兩坐標(biāo)軸上的截距相等,求直線l的方程22.(10分)在數(shù)列中,,且成等比數(shù)列(1)證明數(shù)列是等差數(shù)列,并求的通項公式;(2)設(shè)數(shù)列滿足,其前項和為,證明:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題,可得是定義在上的偶函數(shù),且在上單調(diào)遞減,在上單調(diào)遞增,根據(jù)函數(shù)的單調(diào)性,即可判斷出的大小關(guān)系.【詳解】設(shè),由題,得,即,所以函數(shù)在上單調(diào)遞減,因為是定義在R上的奇函數(shù),所以是定義在上的偶函數(shù),因此,,,即.故選:A【點睛】本題主要考查利用函數(shù)的單調(diào)性判斷大小的問題,其中涉及到構(gòu)造函數(shù)的運用.2、B【解析】先求出圓心到直線的距離為,由此可知當(dāng)圓的半徑為時,圓上恰有三點到直線的距離為,當(dāng)圓的半徑時,圓上恰有四個點到直線的距離為,故半徑的取值范圍是,即可求出答案.【詳解】由已知條件得的圓心坐標(biāo)為,圓心到直線為,∵圓上至少有三個點到直線的距離為1,∴圓的半徑的取值范圍是,即,即半徑的取值范圍是.故選:.3、A【解析】根據(jù)題意可得,圓心到直線的距離等于,即,求得,所以A選項是正確的.【點睛】判斷直線與圓的位置關(guān)系的常見方法:(1)幾何法:利用d與r的關(guān)系.(2)代數(shù)法:聯(lián)立方程之后利用判斷.(3)點與圓的位置關(guān)系法:若直線恒過定點且定點在圓內(nèi),可判斷直線與圓相交.上述方法中常用的是幾何法,點與圓的位置關(guān)系法適用于動直線問題4、C【解析】共漸近線的雙曲線方程,設(shè),把點代入方程解得參數(shù)即可.【詳解】設(shè),把點代入方程解得參數(shù),所以化簡得方程故選:C.5、D【解析】根據(jù)漸近線方程求得關(guān)系,結(jié)合離心率的計算公式,即可求得結(jié)果.【詳解】因為雙曲線的一條漸近線方程為,則;又雙曲線離心率.故選:D.6、B【解析】由得出.【詳解】由可得,故選:B7、B【解析】由直徑所對圓周角是直角,結(jié)合雙曲線的幾何性質(zhì)和角平分線定義可解.【詳解】由圓的性質(zhì)可知,,,所以,因為,所以又因為平分,所以,由,得,所以,即所以故選:B8、B【解析】令,求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)性,即可得到,從而求出答案【詳解】解:令,則,又不等式恒成立,所以,即,所以在單調(diào)遞增,故,即,所以,故選:B9、D【解析】由等比數(shù)列的項求公比,進(jìn)而求即可.【詳解】由題設(shè),,∴故選:D10、A【解析】根據(jù)存在量詞命題的否定為全稱量詞命題判斷,再利用特殊值判斷命題的真假;【詳解】解:因為命題p“存在一個實數(shù)﹐它的絕對值不是正數(shù)”為存在量詞命題,其否定為“任意實數(shù),它的絕對值是正數(shù)”,因為,所以為假命題;故選:A11、C【解析】若函數(shù)是冪函數(shù),則函數(shù)的圖象不過第四象限,原命題是真命題,則其逆否命題也是真命題;其逆命題為:若函數(shù)的圖象不過第四象限,則函數(shù)是冪函數(shù)是假命題,所以原命題的否命題也是假命題.故它的逆命題、否命題、逆否命題三個命題中,真命題有一個.選C12、D【解析】根據(jù)直線平行與直線斜率的關(guān)系,即可求解.【詳解】解:與的斜率相等”,“與可能重合,故前者不可以推出后者,若與平行,與的斜率可能都不存在,故后者不可以推出前者,故前者是后者的既非充分條件也非必要條件,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、(1)在單調(diào)遞增,單調(diào)遞減;(2)詳見解析.【解析】(1)求得,利用和即可求得函數(shù)的單調(diào)性區(qū)間;(2)求得函數(shù)的解析式,求,對的情況進(jìn)行分類討論得到函數(shù)有極大值的情形,再結(jié)合極大值點的定義進(jìn)行替換、即可求解.【詳解】(1)由題意,函數(shù),則,當(dāng)時,令,所以函數(shù)單調(diào)遞增;當(dāng)時,令,即,解得或,令,即,解得,所以函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間中單調(diào)遞減,當(dāng)時,令,即,解得或,令,即,解得,所以函數(shù)在單調(diào)遞增,在單調(diào)遞減.(2)由函數(shù),則,令,可得令,解得,當(dāng)時.,函數(shù)在單調(diào)遞增,此時,所以,函數(shù)在上單調(diào)遞增,此時不存在極大值,當(dāng)時,令解得,令,解得,所以上單調(diào)遞減,在上單調(diào)遞增,因為在上存在極大值,所以,解得,因為,易證明,存在時,,存在使得,當(dāng)在區(qū)間上單調(diào)遞增,在區(qū)間單調(diào)遞減,所以當(dāng)時,函數(shù)取得極大值,即,,由,所以【點睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,以及不等式的證明,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于此類問題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題14、【解析】利用橢圓、雙曲線的定義以及余弦定理找到的關(guān)系,然后利用三角換元求最值即可.【詳解】解析:設(shè)橢圓的長半軸為a,雙曲線的實半軸為,半焦距為c,設(shè),,,因為,所以由余弦定理可得,①在橢圓中,,①化簡為,即,②在雙曲線中,,①化簡為,即,③聯(lián)立②③得,,即,記,,,則,當(dāng)且僅當(dāng),即,時取等號故答案為:.15、【解析】利用點差法可求得的值,利用離心率公式的值.【詳解】設(shè)點、,則,由已知可得,由題意可得,將兩個等式相減得,所以,,因此,.故答案為:.16、【解析】先求得平面ABC的一個法向量,然后由求解.【詳解】因為,,,,所以,設(shè)平面ABC的一個法向量為,則,即,令,則,所以則點到平面的距離為,故答案:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由焦距為解出,再把點代入橢圓方程中,即可解出答案.(2)根據(jù)題意求出當(dāng)直線與軸重合時,由求出值,即求出的方程為.故只需證:當(dāng)直線與軸不重合時,上任意一點均使,設(shè)出直線方程與橢圓進(jìn)行聯(lián)立,化簡得證,即可得到答案.【小問1詳解】.由于點在橢圓C上,則故橢圓C的方程為.【小問2詳解】當(dāng)直線與軸重合時,是橢圓的左右頂點,不妨設(shè),設(shè),則是上的任意一點,即方程對任意實數(shù)都成立,此時的方程為.故只需證:當(dāng)直線與軸不重合時,上任意一點均使即可,設(shè)直線的方程為,,設(shè)則由y得證.故的方程為.18、(1)(2)【解析】(1):根據(jù)正弦定理由邊化角和三角正弦和公式即可求解;(2):根據(jù)余弦定理和均值不等式求得最大值,利用面積公式即可求解【小問1詳解】由正弦定理及,得,∵,∵,∴【小問2詳解】由余弦定理,∴,∴,當(dāng)且僅當(dāng)時等號成立,∴的面積的最大值為19、(1)證明見解析;(2),.【解析】(1)證明出,即可證得結(jié)論成立;(2)由(1)的結(jié)論并確定數(shù)列的首項和公比,可求得數(shù)列的通項公式,再利用分組求和法可求得.【小問1詳解】證明:因為數(shù)列滿足,,則,且,則,,,以此類推可知,對任意的,,所以,,故數(shù)列為等比數(shù)列.【小問2詳解】解:由(1)可知,數(shù)列是首項為,公比為的等比數(shù)列,則,所以,,因此,.20、(1),(2)實數(shù)的取值范圍是【解析】(1)根據(jù)函數(shù)奇偶性求解析式;(2)將恒成立轉(zhuǎn)化為令,恒成立,討論二次函數(shù)系數(shù),結(jié)合根的分布.【詳解】解:(1)因為函數(shù)是定義在實數(shù)集上的奇函數(shù),所以,當(dāng)時,則所以當(dāng)時所以(2)因為時,在上恒成立等價于即在上恒成立令,則①當(dāng)時,不恒成立,故舍去②當(dāng)時必有,此時對稱軸若即或時,恒成立因為,所以若即時,要使恒成立則有與矛盾,故舍去綜上,實數(shù)的取值范圍是【點睛】應(yīng)用函數(shù)奇偶性可解決的四類問題及解題方法(1)求函數(shù)值:將待求值利用奇偶性轉(zhuǎn)化為已知區(qū)間上的函數(shù)值求解;(2)求解析式:先將待求區(qū)間上的自變量轉(zhuǎn)化到已知區(qū)間上,再利用奇偶性求解,或充分利用奇偶性構(gòu)造關(guān)于的方程(組),從而得到的解析式;(3)求函數(shù)解析式中參數(shù)的值:利用待定系數(shù)法求解,根據(jù)得到關(guān)于待求參數(shù)的恒等式,由系數(shù)的對等性得參數(shù)的值或方程(組),進(jìn)而得出參數(shù)的值;(4)畫函數(shù)圖象和判斷單調(diào)性:利用奇偶性可畫出另一對稱區(qū)間上的圖象及判斷另一區(qū)間上的單調(diào)性.21、(1)(2)或【解析】(1)求出直線的斜率可得l的斜率,再借助直線點斜式方程即可得解.(2)按直線l是否過原點分類討論計算作答.【小問1詳解】直線的斜率為,于是得直線l的斜率,則,即,所以直線l的方程是:.【小問2詳解】因直線l在兩坐標(biāo)軸上的截距相等,則當(dāng)直線l過原點時,直線l的方程為:,即,當(dāng)直線l不過原點時,設(shè)其方程為:,則有,解得,此時,直線l的方程為:,所以直線l的方程為:或.22、(1)證明見解析;;(2)證明見解析【解析】(1)利用已知條件推出數(shù)列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論