版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
重慶市高2025屆數(shù)學高三第一學期期末學業(yè)水平測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若為純虛數(shù),則z=()A. B.6i C. D.202.已知命題:,,則為()A., B.,C., D.,3.設,集合,則()A. B. C. D.4.中心在原點,對稱軸為坐標軸的雙曲線的兩條漸近線與圓都相切,則雙曲線的離心率是()A.2或 B.2或 C.或 D.或5.已知函數(shù),若,則等于()A.-3 B.-1 C.3 D.06.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個7.黨的十九大報告明確提出:在共享經濟等領域培育增長點、形成新動能.共享經濟是公眾將閑置資源通過社會化平臺與他人共享,進而獲得收入的經濟現(xiàn)象.為考察共享經濟對企業(yè)經濟活躍度的影響,在四個不同的企業(yè)各取兩個部門進行共享經濟對比試驗,根據四個企業(yè)得到的試驗數(shù)據畫出如下四個等高條形圖,最能體現(xiàn)共享經濟對該部門的發(fā)展有顯著效果的圖形是()A. B.C. D.8.復數(shù)的虛部為()A.—1 B.—3 C.1 D.29.已知點,若點在曲線上運動,則面積的最小值為()A.6 B.3 C. D.10.已知向量,,則向量在向量上的投影是()A. B. C. D.11.函數(shù)f(x)=sin(wx+)(w>0,<)的最小正周期是π,若將該函數(shù)的圖象向右平移個單位后得到的函數(shù)圖象關于直線x=對稱,則函數(shù)f(x)的解析式為()A.f(x)=sin(2x+) B.f(x)=sin(2x-)C.f(x)=sin(2x+) D.f(x)=sin(2x-)12.執(zhí)行下面的程序框圖,則輸出的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.為了抗擊新型冠狀病毒肺炎,某醫(yī)藥公司研究出一種消毒劑,據實驗表明,該藥物釋放量與時間的函數(shù)關系為(如圖所示),實驗表明,當藥物釋放量對人體無害.(1)______;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經過______分鐘人方可進入房間.14.在三棱錐中,已知,且平面平面,則三棱錐外接球的表面積為______.15.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進行分析,隨機抽取了150分到450分之間的1000名學生的成績,并根據這1000名學生的成績畫出樣本的頻率分布直方圖(如圖),則成績在[250,400)內的學生共有____人.16.正項等比數(shù)列|滿足,且成等差數(shù)列,則取得最小值時的值為_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知動圓Q經過定點,且與定直線相切(其中a為常數(shù),且).記動圓圓心Q的軌跡為曲線C.(1)求C的方程,并說明C是什么曲線?(2)設點P的坐標為,過點P作曲線C的切線,切點為A,若過點P的直線m與曲線C交于M,N兩點,則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.18.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,滿足,,,,恰為等比數(shù)列的前3項.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前項和為;若對均滿足,求整數(shù)的最大值;(3)是否存在數(shù)列滿足等式成立,若存在,求出數(shù)列的通項公式;若不存在,請說明理由.19.(12分)如圖,在正三棱柱中,,,分別為,的中點.(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.20.(12分)已知數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設數(shù)列的前項和為,證明:.21.(12分)已知等差數(shù)列滿足,公差,等比數(shù)列滿足,,.求數(shù)列,的通項公式;若數(shù)列滿足,求的前項和.22.(10分)已知都是大于零的實數(shù).(1)證明;(2)若,證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據復數(shù)的乘法運算以及純虛數(shù)的概念,可得結果.【詳解】∵為純虛數(shù),∴且得,此時故選:C.【點睛】本題考查復數(shù)的概念與運算,屬基礎題.2、C【解析】
根據全稱量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱量詞命題的否定是存在量詞命題,且命題:,,.故選:.【點睛】本題考查含有一個量詞的命題的否定,屬于基礎題.3、B【解析】
先化簡集合A,再求.【詳解】由得:,所以,因此,故答案為B【點睛】本題主要考查集合的化簡和運算,意在考查學生對這些知識的掌握水平和計算推理能力.4、A【解析】
根據題意,由圓的切線求得雙曲線的漸近線的方程,再分焦點在x、y軸上兩種情況討論,進而求得雙曲線的離心率.【詳解】設雙曲線C的漸近線方程為y=kx,是圓的切線得:,得雙曲線的一條漸近線的方程為∴焦點在x、y軸上兩種情況討論:
①當焦點在x軸上時有:②當焦點在y軸上時有:∴求得雙曲線的離心率2或.
故選:A.【點睛】本小題主要考查直線與圓的位置關系、雙曲線的簡單性質等基礎知識,考查運算求解能力,考查數(shù)形結合思想.解題的關鍵是:由圓的切線求得直線的方程,再由雙曲線中漸近線的方程的關系建立等式,從而解出雙曲線的離心率的值.此題易忽視兩解得出錯誤答案.5、D【解析】分析:因為題設中給出了的值,要求的值,故應考慮兩者之間滿足的關系.詳解:由題設有,故有,所以,從而,故選D.點睛:本題考查函數(shù)的表示方法,解題時注意根據問題的條件和求解的結論之間的關系去尋找函數(shù)的解析式要滿足的關系.6、B【解析】
根據集合中的元素,可得集合,然后根據交集的概念,可得,最后根據子集的概念,利用計算,可得結果.【詳解】由題可知:,當時,當時,當時,當時,所以集合則所以的子集共有故選:B【點睛】本題考查集合的運算以及集合子集個數(shù)的計算,當集合中有元素時,集合子集的個數(shù)為,真子集個數(shù)為,非空子集為,非空真子集為,屬基礎題.7、D【解析】根據四個列聯(lián)表中的等高條形圖可知,圖中D中共享與不共享的企業(yè)經濟活躍度的差異最大,它最能體現(xiàn)共享經濟對該部門的發(fā)展有顯著效果,故選D.8、B【解析】
對復數(shù)進行化簡計算,得到答案.【詳解】所以的虛部為故選B項.【點睛】本題考查復數(shù)的計算,虛部的概念,屬于簡單題.9、B【解析】
求得直線的方程,畫出曲線表示的下半圓,結合圖象可得位于,結合點到直線的距離公式和兩點的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點為圓心,1為半徑的下半圓(包括兩個端點),如圖,直線的方程為,可得,由圓與直線的位置關系知在時,到直線距離最短,即為,則的面積的最小值為.故選:B.【點睛】本題考查三角形面積最值,解題關鍵是掌握直線與圓的位置關系,確定半圓上的點到直線距離的最小值,這由數(shù)形結合思想易得.10、A【解析】
先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學生概念理解,數(shù)學運算的能力,屬于中檔題.11、D【解析】
由函數(shù)的周期求得,再由平移后的函數(shù)圖像關于直線對稱,得到,由此求得滿足條件的的值,即可求得答案.【詳解】分析:由函數(shù)的周期求得,再由平移后的函數(shù)圖像關于直線對稱,得到,由此求得滿足條件的的值,即可求得答案.詳解:因為函數(shù)的最小正周期是,所以,解得,所以,將該函數(shù)的圖像向右平移個單位后,得到圖像所對應的函數(shù)解析式為,由此函數(shù)圖像關于直線對稱,得:,即,取,得,滿足,所以函數(shù)的解析式為,故選D.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及函數(shù)的解析式的求解,其中解答中根據三角函數(shù)的圖象變換得到,再根據三角函數(shù)的性質求解是解答的關鍵,著重考查了推理與運算能力.12、D【解析】
根據框圖,模擬程序運行,即可求出答案.【詳解】運行程序,,
,,,,,結束循環(huán),故輸出,故選:D.【點睛】本題主要考查了程序框圖,循環(huán)結構,條件分支結構,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、240【解析】
(1)由時,,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當時,,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經過分鐘人方可進入房間.故答案為:(1)2;(2)40【點睛】本題主要考查了分段函數(shù)的應用,屬于中檔題.14、【解析】
取的中點,設等邊三角形的中心為,連接.根據等邊三角形的性質可求得,,由等腰直角三角形的性質,得,根據面面垂直的性質得平面,,由勾股定理求得,可得為三棱錐外接球的球心,根據球體的表面積公式可求得此外接球的表面積.【詳解】在等邊三角形中,取的中點,設等邊三角形的中心為,連接.由,得,,由已知可得是以為斜邊的等腰直角三角形,,又由已知可得平面平面,平面,,,所以,為三棱錐外接球的球心,外接球半徑,三棱錐外接球的表面積為.故答案為:【點睛】本題考查三棱錐的外接球的表面積,關鍵在于根據三棱錐的面的關系、棱的關系和長度求得外接球的球心的位置,球的半徑,屬于中檔題.15、750【解析】因為0.001+0.001+0.004+a+0.005+0.003×50=1,得a=0.006所以1000×0.004+0.006+0.00516、2【解析】
先由題意列出關于的方程,求得的通項公式,再表示出即可求解.【詳解】解:設公比為,且,時,上式有最小值,故答案為:2.【點睛】本題考查等比數(shù)列、等差數(shù)列的有關性質以及等比數(shù)列求積、求最值的有關運算,中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),拋物線;(2)存在,.【解析】
(1)設,易得,化簡即得;(2)利用導數(shù)幾何意義可得,要使,只需.聯(lián)立直線m與拋物線方程,利用根與系數(shù)的關系即可解決.【詳解】(1)設,由題意,得,化簡得,所以動圓圓心Q的軌跡方程為,它是以F為焦點,以直線l為準線的拋物線.(2)不妨設.因為,所以,從而直線PA的斜率為,解得,即,又,所以軸.要使,只需.設直線m的方程為,代入并整理,得.首先,,解得或.其次,設,,則,..故存在直線m,使得,此時直線m的斜率的取值范圍為.【點睛】本題考查直線與拋物線位置關系的應用,涉及拋物線中的存在性問題,考查學生的計算能力,是一道中檔題.18、(2),(2),的最大整數(shù)是2.(3)存在,【解析】
(2)由可得(),然后把這兩個等式相減,化簡得,公差為2,因為,,為等比數(shù)列,所以,化簡計算得,,從而得到數(shù)列的通項公式,再計算出,,,從而可求出數(shù)列的通項公式;(2)令,化簡計算得,從而可得數(shù)列是遞增的,所以只要的最小值大于即可,而的最小值為,所以可得答案;(3)由題意可知,,即,這個可看成一個數(shù)列的前項和,再寫出其前()項和,兩式相減得,,利用同樣的方法可得.【詳解】解:(2)由題,當時,,即當時,①②①-②得,整理得,又因為各項均為正數(shù)的數(shù)列.故是從第二項的等差數(shù)列,公差為2.又恰為等比數(shù)列的前3項,故,解得.又,故,因為也成立.故是以為首項,2為公差的等差數(shù)列.故.即2,4,8恰為等比數(shù)列的前3項,故是以為首項,公比為的等比數(shù)列,故.綜上,(2)令,則所以數(shù)列是遞增的,若對均滿足,只要的最小值大于即可因為的最小值為,所以,所以的最大整數(shù)是2.(3)由,得,③④③-④得,⑤,⑥⑤-⑥得,,所以存在這樣的數(shù)列,【點睛】此題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式,最值,恒成立問題,考查了推理能力與計算能力,屬于中檔題.19、(1)證明見詳解;(2).【解析】
(1)取中點為,通過證明//,進而證明線面平行;(2)取中點為,以為坐標原點建立直角坐標系,求得兩個平面的法向量,用向量法解得二面角的大小.【詳解】(1)證明:取的中點,連結,,如下圖所示:在中,因為為的中點,,且,又為的中點,,,且,,且,四邊形為平行四邊形,又平面,平面,平面,即證.(2)取中點,連結,,則,平面,以為原點,分別以,,為,,軸,建立空間直角坐標系,如下圖所示:則,,,,,,,,設平面的一個法向量,則,則,令.則,同理得平面的一個法向量為,則,故平面與平面所成二面角(銳角)的余弦值為.【點睛】本題考查由線線平行推證線面平行,以及利用向量法求解二面角的大小,屬綜合中檔題.20、(1)(2)證明見解析【解析】
(1),①當時,,②兩式相減即得數(shù)列的通項公式;(2)先求出,再利用裂項相消法求和證明.【詳解】(1)解:,①當時,.當時,,②由①-②,得,因為符合上式,所以.(2)證明:因為,所以.【點睛】本題主要考查數(shù)列通項的求法,考查數(shù)列求和,意在考查學生對這些知識的理解掌握水平.21、,;.【解析】
由,公差,有,,成等比數(shù)列,所以,解得.進而求出數(shù)列,的通項公式;當時,由,所以,當時,由,,可得,進而求出前項和.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023-2024年一級造價師之建設工程技術與計量(安裝)考前沖刺模擬A卷(含答案)
- 2022年中考化學二輪復習填空題之溶液
- 2023-2024年消防設施操作員之消防設備基礎知識考試題庫
- 2022年設備安裝施工基礎知識考試試卷及答案(共六卷)
- 2022-2024年江蘇中考英語試題匯編:任務型閱讀填空和閱讀回答問題(學生)
- 2024版城市供水供電項目建設的合同
- 2024版建筑工程項目管理與技術咨詢協(xié)議版B版
- 新聞行業(yè)的變革與挑戰(zhàn)-新聞行業(yè)分析師演講
- 勞務派遣行業(yè)規(guī)范協(xié)議書
- 2024年項目咨詢合同范本
- 駕駛艙資源管理緒論課件
- 聲藝 EPM8操作手冊
- 西北農林科技大學專業(yè)學位研究生課程案例庫建設項目申請書(MBA)
- 外墻保溫、真石漆施工技術交底
- 車床日常點檢表
- 配網工程施工監(jiān)理管理要點~.docx
- 國內No.7信令方式技術規(guī)范----綜合業(yè)務數(shù)字網用戶部分(ISUP)
- 尾礦庫在線監(jiān)測方案)
- 會計恒等式--試講
- 房屋安全簡易鑒定表.docx
- FSSC運營管理制度(培訓管理辦法)
評論
0/150
提交評論