版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省六安二中、霍邱一中、金寨一中2025屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的離心率為2,則C的漸近線方程為()A. B.C. D.2.1202年,意大利數(shù)學(xué)家斐波那契出版了他的《算盤(pán)全書(shū)》.他在書(shū)中收錄了一些有意思的問(wèn)題,其中有一個(gè)關(guān)于兔子繁殖的問(wèn)題:如果1對(duì)兔子每月生1對(duì)小兔子(一雌一雄),而每1對(duì)小兔子出生后的第3個(gè)月里,又能生1對(duì)小兔子,假定在不發(fā)生死亡的情況下,如果用Fn表示第n個(gè)月的兔子的總對(duì)數(shù),則有(n>2),.設(shè)數(shù)列{an}滿(mǎn)足:an=,則數(shù)列{an}的前36項(xiàng)和為()A.11 B.12C.13 D.183.已知雙曲線,過(guò)左焦點(diǎn)且與軸垂直的直線與雙曲線交于、兩點(diǎn),若弦的長(zhǎng)恰等于實(shí)鈾的長(zhǎng),則雙曲線的離心率為()A. B.C. D.4.已知銳角的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若向量,,,則的最小值為()A. B.C. D.5.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,而是逐項(xiàng)差數(shù)之差或者高次差相等.對(duì)這類(lèi)高階等差數(shù)列的研究,在楊輝之后一般稱(chēng)為“垛積術(shù)”.現(xiàn)有一個(gè)高階等差數(shù)列,其前7項(xiàng)分別為1,5,11,21,37,61,95,則該數(shù)列的第8項(xiàng)為()A.99 B.131C.139 D.1416.設(shè)變量滿(mǎn)足約束條件:,則的最小值()A. B.C. D.7.運(yùn)行如圖所示程序后,輸出的結(jié)果為()A.15 B.17C.19 D.218.已知橢圓的離心率為,雙曲線的離心率為,則()A. B.C. D.9.已知直線為拋物線的準(zhǔn)線,直線經(jīng)過(guò)拋物線的焦點(diǎn),與拋物線交于點(diǎn),則的最小值為()A. B.C.4 D.810.已知m,n表示兩條不同直線,表示兩個(gè)不同平面.設(shè)有兩個(gè)命題::若,則;:若,則.則下列命題中為真命題的是()A. B.C. D.11.已知圓與拋物線的準(zhǔn)線相切,則實(shí)數(shù)p的值為()A.2 B.6C.3或8 D.2或612.為迎接2022年冬奧會(huì),某校在體育冰球課上加強(qiáng)冰球射門(mén)訓(xùn)練,現(xiàn)從甲、乙兩隊(duì)中各選出5名球員,并分別將他們依次編號(hào)為1,2,3,4,5進(jìn)行射門(mén)訓(xùn)練,他們的進(jìn)球次數(shù)如折線圖所示,則在這次訓(xùn)練中以下說(shuō)法正確的是()A.甲隊(duì)球員進(jìn)球的中位數(shù)比乙隊(duì)大 B.乙隊(duì)球員進(jìn)球的中位數(shù)比甲隊(duì)大C.乙隊(duì)球員進(jìn)球水平比甲隊(duì)穩(wěn)定 D.甲隊(duì)球員進(jìn)球數(shù)的極差比乙隊(duì)小二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左、右焦點(diǎn)分別為、,關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)A、B在橢圓上,且滿(mǎn)足,若令且,則該橢圓離心率的取值范圍為_(kāi)__________14.在等比數(shù)列中,若,,則數(shù)列的公比為_(kāi)__________.15.?dāng)?shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,曲線就是其中之一(如圖).給出下列三個(gè)結(jié)論:其中,所有正確結(jié)論的序號(hào)是____________①曲線C恰好經(jīng)過(guò)6個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));②曲線C上任意一點(diǎn)到原點(diǎn)的距離都不超過(guò);③曲線C所圍城的“心形”區(qū)域的面積小于316.已知,點(diǎn)在軸上,且,則點(diǎn)的坐標(biāo)為_(kāi)___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知二次曲線的方程:(1)分別求出方程表示橢圓和雙曲線的條件;(2)若雙曲線與直線有公共點(diǎn)且實(shí)軸最長(zhǎng),求雙曲線方程;(3)為正整數(shù),且,是否存在兩條曲線,其交點(diǎn)P與點(diǎn)滿(mǎn)足,若存在,求的值;若不存在,說(shuō)明理由18.(12分)已知是拋物線的焦點(diǎn),點(diǎn)在拋物線上,且.(1)求的方程;(2)過(guò)上一動(dòng)點(diǎn)作的切線交軸于點(diǎn).判斷線段的中垂線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.19.(12分)已知是橢圓的兩個(gè)焦點(diǎn),P為C上一點(diǎn),O為坐標(biāo)原點(diǎn)(1)若為等邊三角形,求C的離心率;(2)如果存在點(diǎn)P,使得,且的面積等于16,求b的值和a的取值范圍.20.(12分)“既要金山銀山,又要綠水青山”.濱江風(fēng)景區(qū)在一個(gè)直徑為100米的半圓形花園中設(shè)計(jì)一條觀光線路(如圖所示).在點(diǎn)與圓弧上的一點(diǎn)(不同于A,B兩點(diǎn))之間設(shè)計(jì)為直線段小路,在直線段小路的兩側(cè)(注意是兩側(cè))種植綠化帶;再?gòu)狞c(diǎn)到點(diǎn)設(shè)計(jì)為沿弧的弧形小路,在弧形小路的內(nèi)側(cè)(注意是一側(cè))種植綠化帶(注:小路及綠化帶的寬度忽略不計(jì)).(1)設(shè)(弧度),將綠化帶總長(zhǎng)度表示為的函數(shù);(2)試確定的值,使得綠化帶總長(zhǎng)度最大.(弧度公式:,其中為弧所對(duì)的圓心角)21.(12分)設(shè)點(diǎn)P是曲線上的任意一點(diǎn),k是該曲線在點(diǎn)P處的切線的斜率(1)求k的取值范圍;(2)求當(dāng)k取最大值時(shí),該曲線在點(diǎn)P處的切線方程22.(10分)某城市100戶(hù)居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖(1)求直方圖中的值;(2)求月平均用電量的眾數(shù)和中位數(shù)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)離心率及a,b,c的關(guān)系,可求得,代入即可得答案.【詳解】因?yàn)殡x心率,所以,所以,,則,所以C的漸近線方程為.故選:A2、B【解析】由奇數(shù)+奇數(shù)=偶數(shù),奇數(shù)+偶數(shù)=奇數(shù)可知,數(shù)列{Fn}中F3,F(xiàn)6,F(xiàn)9,F(xiàn)12,,F(xiàn)3n為偶數(shù),其余項(xiàng)都為奇數(shù),再根據(jù)an=,即可求出數(shù)列{an}的前36項(xiàng)和【詳解】由奇數(shù)+奇數(shù)=偶數(shù),奇數(shù)+偶數(shù)=奇數(shù)可知,數(shù)列{Fn}中F3,F(xiàn)6,F(xiàn)9,F(xiàn)12,,F(xiàn)3n為偶數(shù),其余項(xiàng)都為奇數(shù),∴前36項(xiàng)共有12項(xiàng)為偶數(shù),∴數(shù)列{an}的前36項(xiàng)和為12×1+24×0=12.故選:B3、B【解析】求出,進(jìn)而求出,之間的關(guān)系,即可求解結(jié)論【詳解】解:由題意,直線方程為:,其中,因此,設(shè),,,,解得,得,,弦的長(zhǎng)恰等于實(shí)軸的長(zhǎng),,,故選:B4、C【解析】由,得到,根據(jù)正弦、余弦定理定理化簡(jiǎn)得到,化簡(jiǎn)得到,再結(jié)合基本不等式,即可求解.【詳解】由題意,向量,,因?yàn)椋?,可得,由正弦定理得,整理得,又由余弦定理,可得,因?yàn)?,所以,由,所以,因?yàn)槭卿J角三角形,且,可得,解得,所以,所以,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,故的最小值為.故選:C5、D【解析】根據(jù)題中所給高階等差數(shù)列定義,找出其一般規(guī)律即可求解.【詳解】設(shè)該高階等差數(shù)列的第8項(xiàng)為,根據(jù)所給定義,用數(shù)列的后一項(xiàng)減去前一項(xiàng)得到一個(gè)數(shù)列,得到的數(shù)列也用后一項(xiàng)減去前一項(xiàng)得到一個(gè)數(shù)列,即得到了一個(gè)等差數(shù)列,如圖:由圖可得,則.故選:D6、D【解析】如圖作出可行域,知可行域的頂點(diǎn)是A(-2,2)、B()及C(-2,-2),平移,當(dāng)經(jīng)過(guò)A時(shí),的最小值為-8,故選D.7、D【解析】根據(jù)給出的循環(huán)程序進(jìn)行求解,直到滿(mǎn)足,輸出.【詳解】,,,,,,,,,,,,所以.故選:D8、D【解析】根據(jù)給定的方程求出離心率,的表達(dá)式,再計(jì)算判斷作答.【詳解】因橢圓的離心率為,則有,因雙曲線的離心率為,則有,所以.故選:D9、D【解析】先求拋物線的方程,再聯(lián)立直線方程和拋物線方程,由弦長(zhǎng)公式可求的最小值.【詳解】因?yàn)橹本€為拋物線的準(zhǔn)線,故即,故拋物線方程為:.設(shè)直線,則,,而,當(dāng)且僅當(dāng)?shù)忍?hào)成立,故的最小值為8,故選:D.10、B【解析】利用直線與平面,平面與平面的位置關(guān)系判斷2個(gè)命題的真假,再利用復(fù)合命題的真值表判斷選項(xiàng)的正誤即可【詳解】,表示兩條不同直線,,表示兩個(gè)不同平面:若,,則也可能,也可能與相交,所以是假命題,為真命題;:令直線的方向向量為,直線的方向向量為,若,則,則,所以是真命題,所以為假命題;所以為假命題,是真命題,為假命題,是真命題,所以為假命題故選:11、D【解析】由拋物線準(zhǔn)線與圓相切,結(jié)合拋物線方程,令求切線方程且拋物線準(zhǔn)線方程為,即可求參數(shù)p.【詳解】圓的標(biāo)準(zhǔn)方程為:,故當(dāng)時(shí),有或,所以或,得或6故選:D12、C【解析】根據(jù)折線圖,求出甲乙中位數(shù)、平均數(shù)及方差、極差,即可判斷各選項(xiàng)的正誤.【詳解】由題圖,甲隊(duì)數(shù)據(jù)從小到大排序?yàn)?,乙?duì)數(shù)據(jù)從小到大排序?yàn)?,所以甲乙兩?duì)的平均數(shù)都為5,甲、乙進(jìn)球中位數(shù)相同都為5,A、B錯(cuò)誤;甲隊(duì)方差為,乙隊(duì)方差為,即,故乙隊(duì)球員進(jìn)球水平比甲隊(duì)穩(wěn)定,C正確.甲隊(duì)極差為6,乙隊(duì)極差為4,故甲隊(duì)極差比乙隊(duì)大,D錯(cuò)誤.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由得為矩形,則,故,結(jié)合正弦函數(shù)即可求得范圍【詳解】由已知可得,且四邊形為矩形所以,又因?yàn)?,所以得離心率因?yàn)?,所以,可得,從而故答案為?4、##【解析】求出等比數(shù)列的公比,利用定義可求得數(shù)列的公比.【詳解】設(shè)等比數(shù)列的公比為,則,因此,數(shù)列的公比為.故答案為:.15、①②【解析】根據(jù)題意,先判斷曲線關(guān)于軸對(duì)稱(chēng),由基本不等式的性質(zhì)對(duì)方程變形,得到,可判定①正確;當(dāng)時(shí),,得到曲線右側(cè)部分的點(diǎn)到原點(diǎn)的距離都不超過(guò),再根據(jù)曲線的對(duì)稱(chēng)性,可判定②正確;由軸的上方,圖形的面積大于四點(diǎn)圍成的矩形的面積,在軸的下方,圖形的面積大于三點(diǎn)圍成的三角形的面積,可判斷③不正確.【詳解】根據(jù)題意,曲線,用替換曲線方程中的,方程不變,所以曲線關(guān)于軸對(duì)稱(chēng),對(duì)于①中,當(dāng)時(shí),,即為,可得,所以曲線經(jīng)過(guò)點(diǎn),再根據(jù)對(duì)稱(chēng)性可知,曲線還經(jīng)過(guò)點(diǎn),故曲線恰好經(jīng)過(guò)6個(gè)整點(diǎn),所以①正確;對(duì)于②中,由①可知,當(dāng)時(shí),,即曲線右側(cè)部分的點(diǎn)到原點(diǎn)的距離都不超過(guò),再根據(jù)曲線的對(duì)稱(chēng)性可知,曲線上任意一點(diǎn)到原點(diǎn)的距離都不超過(guò),所以②正確;對(duì)于③中,因?yàn)樵谳S的上方,圖形的面積大于四點(diǎn)圍成的矩形的面積,在軸的下方,圖形的面積大于三點(diǎn)圍成的三角形的面積,所以曲線所圍城的“心形”區(qū)域的面積大于3,所以③不正確.故選:①②16、【解析】設(shè)P(0,0,z),由|PA|=|PB|,得1+4+(z?1)2=4+4+(z?2)2,解得z=3,故點(diǎn)P的坐標(biāo)為(0,0,3).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)時(shí),方程表示橢圓,時(shí),方程表示雙曲線;(2);(3)存在,且或或.【解析】(1)當(dāng)且僅當(dāng)分母都為正,且不相等時(shí),方程表示橢圓;當(dāng)且僅當(dāng)分母異號(hào)時(shí),方程表示雙曲線(2)將直線與曲線聯(lián)立化簡(jiǎn)得:,利用雙曲線與直線有公共點(diǎn),可確定的范圍,從而可求雙曲線的實(shí)軸,進(jìn)而可得雙曲線方程;(3)由(1)知,,是橢圓,,,,是雙曲線,結(jié)合圖象的幾何性質(zhì),任意兩橢圓之間無(wú)公共點(diǎn),任意兩雙曲線之間無(wú)公共點(diǎn),從而可求【詳解】(1)當(dāng)且僅當(dāng)時(shí),方程表示橢圓;當(dāng)且僅當(dāng)時(shí),方程表示雙曲線(2)化簡(jiǎn)得:△或所以雙曲線的實(shí)軸為,當(dāng)時(shí),雙曲線實(shí)軸最長(zhǎng)為此時(shí)雙曲線方程為(3)由(1)知,,是橢圓,,,,是雙曲線,結(jié)合圖象的幾何性質(zhì)任意兩橢圓之間無(wú)公共點(diǎn),任意兩雙曲線之間無(wú)公共點(diǎn)設(shè),,,2,,,6,7,由橢圓與雙曲線定義及;所以所以這樣的,存在,且或或【點(diǎn)睛】方法點(diǎn)睛:曲線方程的確定可分為兩類(lèi):若已知曲線類(lèi)型,則采用待定系數(shù)法;若曲線類(lèi)型未知時(shí),則可利用直接法、定義法、相關(guān)點(diǎn)法等求解或者利用分類(lèi)討論思想求解.18、(1)(2)過(guò)定點(diǎn),定點(diǎn)為【解析】(1)利用拋物線的定義求解;(2)設(shè)直線的方程為,,與拋物線方程聯(lián)立,根據(jù)直線與拋物線C相切,由求得,再得到,寫(xiě)出線段的中垂線方程求解.【小問(wèn)1詳解】解:由題意得,,解得=2p,因?yàn)辄c(diǎn)M(,4)在拋物線C上,所以42=2p=4p2,解得p=2,所以?huà)佄锞€C的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】由已知得,直線的斜率存在且不為0,所以設(shè)直線的方程為,與拋物線方程聯(lián)立并消去得:,因?yàn)橹本€與拋物線C相切,所以,得,,所以,得,在中,令得,所以,所以線段中點(diǎn)為,線段的中垂線方程為,所以線段的中垂線過(guò)定點(diǎn).19、(1);(2),a的取值范圍為.【解析】(1)先連結(jié),由為等邊三角形,得到,,;再由橢圓定義,即可求出結(jié)果;(2)先由題意得到,滿(mǎn)足條件的點(diǎn)存在,當(dāng)且僅當(dāng),,,根據(jù)三個(gè)式子聯(lián)立,結(jié)合題中條件,即可求出結(jié)果.【詳解】(1)連結(jié),由等邊三角形可知:在中,,,,于是,故橢圓C的離心率為;(2)由題意可知,滿(mǎn)足條件的點(diǎn)存在,當(dāng)且僅當(dāng),,,即①②③由②③以及得,又由①知,故;由②③得,所以,從而,故;當(dāng),時(shí),存在滿(mǎn)足條件的點(diǎn).故,a的取值范圍為.【點(diǎn)睛】本題主要考查求橢圓的離心率,以及橢圓中存在定點(diǎn)滿(mǎn)足題中條件的問(wèn)題,熟記橢圓的簡(jiǎn)單性質(zhì)即可求解,考查計(jì)算能力,屬于中檔試題.20、(1);(2).【解析】(1)在直角三角形中,求出,在扇形中利用弧長(zhǎng)公式求出弧的長(zhǎng)度,則可得函數(shù);(2)利用導(dǎo)數(shù)可求得結(jié)果.【詳解】(1)如圖,連接在直角三角形中,所以由于則弧的長(zhǎng)為(2)由(1)可知,令得,因?yàn)樗?,?dāng)單調(diào)遞增,當(dāng)單調(diào)遞減,所以當(dāng)時(shí),使得綠化帶總長(zhǎng)度最大.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:仔細(xì)審題,注意題目中的關(guān)鍵詞“兩側(cè)”和“一側(cè)”是解題關(guān)鍵.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代物流信息系統(tǒng)建設(shè)中的標(biāo)準(zhǔn)化問(wèn)題
- 掛繩高空作業(yè)施工方案
- 拆除臨時(shí)用電施工方案
- 生態(tài)文明教育在校園的實(shí)踐與推廣
- 現(xiàn)代企業(yè)綜合管理能力提升及領(lǐng)導(dǎo)力培訓(xùn)方案研究報(bào)告
- 國(guó)慶節(jié)營(yíng)銷(xiāo)活動(dòng)方案模板
- 2023三年級(jí)語(yǔ)文上冊(cè) 第一單元 習(xí)作:猜猜他是誰(shuí)說(shuō)課稿 新人教版
- Unit 2 AnimaIs Lesson 1 Enjoy the story(說(shuō)課稿)-2024-2025學(xué)年北師大版(三起)英語(yǔ)五年級(jí)上冊(cè)
- 2024秋八年級(jí)物理上冊(cè) 第1章 機(jī)械運(yùn)動(dòng) 第2節(jié) 運(yùn)動(dòng)的描述說(shuō)課稿2(新版)新人教版
- 2025仿石漆施工合同
- 數(shù)學(xué)-河南省三門(mén)峽市2024-2025學(xué)年高二上學(xué)期1月期末調(diào)研考試試題和答案
- 二零二五版電力設(shè)施維修保養(yǎng)合同協(xié)議3篇
- 運(yùn)動(dòng)技能學(xué)習(xí)與控制課件第一章運(yùn)動(dòng)技能學(xué)習(xí)與控制概述
- 固體廢棄物檢查記錄
- 工程設(shè)計(jì)費(fèi)取費(fèi)標(biāo)準(zhǔn)
- 2023年遼寧鐵道職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析
- CAPP教學(xué)講解課件
- 自然環(huán)境的服務(wù)功能課件 高中地理人教版(2019)選擇性必修3
- 小耳畸形課件
- 精美唯美淡雅個(gè)人求職簡(jiǎn)歷模板 (7)
- 環(huán)保鐵1215物質(zhì)安全資料表MSDS
評(píng)論
0/150
提交評(píng)論