2025屆山東省萊山第一中學高二數(shù)學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
2025屆山東省萊山第一中學高二數(shù)學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
2025屆山東省萊山第一中學高二數(shù)學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
2025屆山東省萊山第一中學高二數(shù)學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
2025屆山東省萊山第一中學高二數(shù)學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆山東省萊山第一中學高二數(shù)學第一學期期末質量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面直角坐標系中,直線+的傾斜角是()A. B.C. D.2.設變量滿足約束條件,則的最大值為()A.0 B.C.3 D.43.我國古代數(shù)學論著中有如下敘述:“遠望巍巍塔七層,紅光點點倍加增,共燈二百五十四.”思如下:一座7層塔共掛了254盞燈,且相鄰兩層下一層所掛燈數(shù)是上一層所掛燈數(shù)的2倍.下列結論不正確的是()A.底層塔共掛了128盞燈B.頂層塔共掛了2盞燈C.最下面3層塔所掛燈的總盞數(shù)比最上面3層塔所掛燈的總盞數(shù)多200D.最下面3層塔所掛燈的總盞數(shù)是最上面3層塔所掛燈的總盞數(shù)的16倍4.已知函數(shù)在上單調遞減,則實數(shù)的取值范圍是()A. B.C. D.5.如圖所示,某空間幾何體的三視圖是3個全等的等腰直角三角形,且直角邊長為2,則該空間幾何體的體積為()A. B.C. D.6.觀察下列各式:,,,,,可以得出的一般結論是A.B.C.D.7.曲線與曲線()的()A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等8.已知為偶函數(shù),且,則___________.9.在等比數(shù)列中,,,則等于()A. B.5C. D.910.經(jīng)過點A(0,-3)且斜率為2的直線方程為()A. B.C. D.11.函數(shù)區(qū)間上有()A.極大值為27,極小值為-5 B.無極大值,極小值為-5C.極大值為27,無極小值 D.無極大值,無極小值12.考試停課復習期間,小王同學計劃將一天中的7節(jié)課全部用來復習4門不同的考試科目,每門科目復習1或2節(jié)課,則不同的復習安排方法有()種A.360 B.630C.2520 D.15120二、填空題:本題共4小題,每小題5分,共20分。13.某公司青年、中年、老年員工的人數(shù)之比為10∶8∶7,從中抽取100名作為樣本,若每人被抽中的概率是0.2,則該公司青年員工的人數(shù)為__________14.經(jīng)過點,,的圓的方程為______.15.“五經(jīng)”是《詩經(jīng)》、《尚書》、《禮記》、《周易》、《春秋》的合稱,貴為中國文化經(jīng)典著作,所載內容及哲學思想至今仍具有積極意義和參考價值.某校計劃開展“五經(jīng)”經(jīng)典誦讀比賽活動,某班有、兩位同學參賽,比賽時每位同學從這本書中隨機抽取本選擇其中的內容誦讀,則、兩位同學抽到同一本書的概率為______.16.下方莖葉圖記錄了甲、乙兩組各5名學生在一次英語聽力測試中的成績(單位:分).已知甲組數(shù)據(jù)的中位數(shù)為,乙組數(shù)據(jù)的平均數(shù)為,則的值為__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)直線經(jīng)過點,且與圓相交與兩點,截得的弦長為,求的方程.18.(12分)已知數(shù)列的前n項和(1)證明是等比數(shù)列,并求的通項公式;(2)在和之間插入n個數(shù),使這個數(shù)組成一個公差為的等差數(shù)列,求數(shù)列的前n項和19.(12分)已知數(shù)列{an}是一個等差數(shù)列,且a2=1,a5=-5.(1)求{an}的通項an;(2)求{an}前n項和Sn的最大值20.(12分)已知O為坐標原點,雙曲線C:(,)的離心率為,點P在雙曲線C上,點,分別為雙曲線C的左右焦點,.(1)求雙曲線C的標準方程;(2)已知點,,設直線PA,PB的斜率分別為,.證明:為定值.21.(12分)已知函數(shù),,其中為自然對數(shù)的底數(shù).(1)若為的極值點,求的單調區(qū)間和最大值;(2)是否存在實數(shù),使得的最大值是?若存在,求出的值;若不存在,說明理由.22.(10分)設{an}是公比為正數(shù)的等比數(shù)列a1=2,a3=a2+4(Ⅰ)求{an}的通項公式;(Ⅱ)設{bn}是首項為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項和Sn

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由直線方程得斜率,從而得傾斜角【詳解】由直線方程知直角斜率為,在上正切值為1的角為,即為傾斜角故選:B2、A【解析】先畫出約束條件所表示的平面區(qū)域,然后根據(jù)目標函數(shù)的幾何意義,即可求出目標函數(shù)的最大值.【詳解】解:滿足約束條件的可行域如下圖所示:由,可得,因為目標函數(shù),即,表示斜率為,截距為的直線,由圖可知,當直線經(jīng)過時截距取得最小值,即取得最大值,所以的最大值為,故選:A.3、C【解析】由題設易知是公比為2的等比數(shù)列,應用等比數(shù)列前n項和公式求,結合各選項的描述及等比數(shù)列通項公式、前n項和公式判斷正誤即可.【詳解】從上往下記每層塔所掛燈的盞數(shù)為,則數(shù)列是公比為2的等比數(shù)列,且,解得,所以頂層塔共掛了2盞燈,B正確;底層塔共掛了盞燈,A正確最上面3層塔所掛燈總盞數(shù)為14,最下面3層塔所掛燈的總盞數(shù)為224,C不正確,D正確故選:C.4、A【解析】由題意,在上恒成立,只需滿足即可求解.【詳解】解:因為,所以,因為函數(shù)在上單調遞減,所以在上恒成立,只需滿足,即,解得故選:A.5、A【解析】在該空間幾何體的直觀圖中去求其體積即可.【詳解】依托棱長為2的正方體得到該空間幾何體的直觀圖為三棱錐則故選:A6、C【解析】1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以歸納:左邊每一個式子均有2n-1項,且第一項為n,則最后一項為3n-2右邊均為2n-1的平方故選C點睛:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質;(2)從已知的相同性質中推出一個明確表達的一般性命題(猜想)7、D【解析】分別求出兩橢圓的長軸長、短軸長、離心率、焦距,即可判斷.【詳解】曲線表示焦點在軸上,長軸長為,短軸長為,離心率為,焦距為;曲線表示焦點在軸上,長軸長為,短軸長為,離心率為,焦距為.對照選項可知:焦距相等.故選:D.8、8【解析】由已知條件中的偶函數(shù)即可計算出結果,【詳解】為偶函數(shù),且,.故答案為:89、D【解析】由等比數(shù)列的項求公比,進而求即可.【詳解】由題設,,∴故選:D10、A【解析】直接代入點斜式方程求解即可詳解】因為直線經(jīng)過點且斜率為2,所以直線的方程為,即,故選:11、B【解析】求出得出的單調區(qū)間,從而可得答案.【詳解】當時,,單調遞減.當時,,單調遞增.所以當時,取得極小值,極小值為,無極大值.故選:B12、C【解析】,先安排復習節(jié)的科目,然后安排其余科目,由此計算出不同的復習安排方法數(shù).【詳解】第步,門科目選門,安排節(jié)課,方法數(shù)有種,第步,安排其余科目,每門科目節(jié)課,方法數(shù)有種,所以不同的復習安排方法有種.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、200【解析】先根據(jù)分層抽樣的方法計算出該單位青年職工應抽取的人數(shù),進而算出青年職工的總人數(shù).【詳解】由題意,從中抽取100名員工作為樣本,需要從該單位青年職工中抽?。ㄈ耍?因為每人被抽中的概率是0.2,所以青年職工共有(人).故答案:200.14、【解析】設所求圓的方程為,然后將三個點的坐標代入方程中解方程組求出的值,可得圓的方程【詳解】設所求圓的方程為,則,解得,所以圓的方程為,即,故答案為:15、##【解析】計算出、兩位同學各隨機抽出一本書的結果種數(shù),以及、兩位同學抽到同一本書的結果種數(shù),利用古典概型的概率公式可求得所求事件的概率.【詳解】、兩位同學抽到的結果都有種,由分步乘法計數(shù)原理可知,、兩位同學各隨機抽出一本書,共有種結果,而、兩位同學抽到同一本書的結果有種,故所求概率為.故答案為:.16、9【解析】閱讀莖葉圖,由甲組數(shù)據(jù)的中位數(shù)為可得,乙組的平均數(shù):,解得:,則:點睛:莖葉圖的繪制需注意:(1)“葉”的位置只有一個數(shù)字,而“莖”的位置的數(shù)字位數(shù)一般不需要統(tǒng)一;(2)重復出現(xiàn)的數(shù)據(jù)要重復記錄,不能遺漏,特別是“葉”的位置的數(shù)據(jù)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、或【解析】直線截圓得的弦長為,結合圓的半徑為5,利用勾股定理可得圓心到直線的距離,再利用點到直線的距離公式列方程求出直線斜率,由點斜式可得結果.【詳解】設直線的方程為,即,因為圓的半徑為5,截得的弦長為所以圓心到直線的距離,即或,∴所求直線的方程為或.【點睛】本題主要考查點到直線距離公式以及圓的弦長的求法,求圓的弦長有兩種方法:一是利用弦長公式,結合韋達定理求解;二是利用半弦長,弦心距,圓半徑構成直角三角形,利用勾股定理求解.18、(1)證明見解析,(2)【解析】(1)利用及已知即可得到證明,從而求得通項公式;(2)先求出通項,再利用錯位相減法求和即可.【小問1詳解】因,當時,,所以,當時,,又,解得,所以是以2為首項,2為公比的等比數(shù)列,故【小問2詳解】因為,所以,,,,所以,所以19、(1)an=-2n+5.(2)4【解析】(Ⅰ)設{an}的公差為d,由已知條件,,解出a1=3,d=-2所以an=a1+(n-1)d=-2n+5(Ⅱ)Sn=na1+d=-n2+4n=-(n-2)2+4,所以n=2時,Sn取到最大值420、(1)(2)證明見解析【解析】(1)根據(jù)題意和雙曲線的定義求出,結合離心率求出b,即可得出雙曲線的標準方程;(2)設,根據(jù)兩點的坐標即可求出、,化簡計算即可.【小問1詳解】由題知:由雙曲線的定義知:,又因為,所以,所以所以,雙曲線C的標準方程為小問2詳解】設,則因為,,所以,所以21、(1)單調增區(qū)間是,單調減區(qū)間是;最大值為;(2)存在,.【解析】(1)利用為的極值點求得,進而可得函數(shù)的單調區(qū)間和最大值;(2)對導函數(shù),分與進行討論,得函數(shù)的單調性進而求得最值,再由最大值是求出的值.【詳解】解:.(1)∵,,∴,由,得.∴,∴,,,,∴的單調增區(qū)間是,單調減區(qū)間是;的極大值為;也即的最大值為.(2)解:∵,∴,①當時,單調遞增,得的最大值是,解得,舍去;②時,由,即,當,即時,∴時,;時,;∴的單調增區(qū)間是,單調減區(qū)間是,又在上的最大值為,∴,∴;當,即時,在單調遞增,∴的最大值是,解得,舍去;綜上:存在符合題意,此時.【點睛】本題主要考查了函數(shù)的導數(shù)在求解函數(shù)的單調性及求解函數(shù)的最值中的應用,還考查了函數(shù)的最值求解與分類討論的應用,解題時要認真審題,注意挖掘題設中的條件.22、(Ⅰ)an=2×2n﹣1=2n(Ⅱ)2n﹣12n+1﹣2+n2=2n+1+n2﹣2【解析】(Ⅰ)由{an}是公比為正數(shù)的等比數(shù)列,設其公比,然后利用a1=2,a3=a2+4可求得q,即可求得{an}的通項公式(Ⅱ)由{bn}是首項為1,公差為2的等差數(shù)列可求得bn=1+(n﹣1)×2=2n﹣1,然后利用等比數(shù)列與等差數(shù)列的前n項和公式即可求得數(shù)列{an+bn}的前n項和Sn解:(Ⅰ)∵設{an}是公比為正數(shù)的等比數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論