版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京市順義區(qū)第九中學2025屆高二上數(shù)學期末質量跟蹤監(jiān)視試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在空間直角坐標系中,為直線的一個方向向量,為平面的一個法向量,且,則()A. B.C. D.2.記等差數(shù)列的前n項和為,若,,則等于()A.5 B.31C.38 D.413.經過點作圓的弦,使點為弦的中點,則弦所在直線的方程為A. B.C. D.4.已知正三棱柱中,,點為中點,則異面直線與所成角的余弦值為()A. B.C. D.5.已知命題“”為真命題,“”為真命題,則()A.為假命題,為真命題 B.為真命題,為真命題C.為真命題,為假命題 D.為假命題,為假命題6.某班對期中成績進行分析,利用隨機數(shù)表法抽取樣本時,先將60個同學的成績按01,02,03,……,60進行編號,然后從隨機數(shù)表第9行第5列的數(shù)1開始向右讀,則選出的第6個個體是()(注:如下為隨機數(shù)表的第8行和第9行)6301637859169555671998105071751286735833211234297864560782524507443815510013A.07 B.25C.42 D.527.設雙曲線的左、右頂點分別為、,點在雙曲線上第一象限內的點,若的三個內角分別為、、且,則雙曲線的漸近線方程為()A. B.C. D.8.已知橢圓的離心率為,則()A. B.C. D.9.已知過點的直線l與圓相交于A,B兩點,則的取值范圍是()A. B.C. D.10.已知拋物線,過點作拋物線的兩條切線,點為切點.若的面積不大于,則的取值范圍是()A. B.C. D.11.已知下列四個命題,其中正確的是()A. B.C. D.12.方程表示的曲線經過的一點是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.與雙曲線有共同漸近線,并且經過點的雙曲線方程是______14.已知為拋物線上的動點,,,則的最小值為________.15.已知點P是橢圓上的一點,點,則的最小值為____________.16.如圖所示,直線是曲線在點處的切線,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右兩個焦點,,離心率,短軸長為21求橢圓的方程;2如圖,點A為橢圓上一動點非長軸端點,的延長線與橢圓交于B點,AO的延長線與橢圓交于C點,求面積的最大值18.(12分)已知數(shù)列的前n項和為,且(1)證明數(shù)列是等比數(shù)列,并求出數(shù)列的通項公式;(2)在與之間插入n個數(shù),使得包括與在內的這個數(shù)成等差數(shù)列,其公差為,求數(shù)列的前n項和19.(12分)某校從高三年級學生中隨機抽取名學生的某次數(shù)學考試成績,將其成績分成,,,,的組,制成如圖所示的頻率分布直方圖.(1)求圖中的值;(2)估計這組數(shù)據的平均數(shù);(3)若成績在內的學生中男生占.現(xiàn)從成績在內的學生中隨機抽取人進行分析,求人中恰有名女生的概率.20.(12分)某市為加強市民對新冠肺炎的知識了解,面向全市征召義務宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機抽取100名按年齡分組:第1組[20,25),共5人,第2組[25,30),共35人,第3組[30,35),第4組[35,40),第5組[40,45],得到的頻率分布直方圖如圖所示.(1)求a的值;(2)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場宣傳活動,且該市決定在第3,4組的志愿者中隨機抽取2名志愿者介紹宣傳經驗,求第3組至少有-名志愿者被抽中的概率.21.(12分)設數(shù)列的前項和為,且.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和為.22.(10分)已知直線.(1)若,求直線與直線的交點坐標;(2)若直線與直線垂直,求a的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由已知條件得出,結合空間向量數(shù)量積的坐標運算可求得實數(shù)的值.【詳解】因為,則,解得.故選:B.2、A【解析】設等差數(shù)列的公差為d,首先根據題意得到,再解方程組即可得到答案.【詳解】解:設等差數(shù)列的公差為d,由題知:,解得.故選:A.3、A【解析】由題知為弦AB的中點,可得直線與過圓心和點的直線垂直,可求的斜率,然后用點斜式求出的方程【詳解】由題意知圓的圓心為,,由,得,∴弦所在直線的方程為,整理得.選A.【點睛】本題考查直線與圓的位置關系,直線的斜率,直線的點斜式方程,屬于基礎題4、A【解析】根據異面直線所成角的定義,取中點為,則為異面直線和所成角或其補角,再解三角形即可求出【詳解】如圖所示:設中點為,則在三角形中,為中點,為中位線,所以有,,所以為異面直線和所成角或其補角,在三角形中,,所以由余弦定理有,故選:A.5、A【解析】根據復合命題的真假表即可得出結果.【詳解】若“”為真命題,則為假命題,又“”為真命題,則至少有一個真命題,所以為真命題,即為假命題,為真命題.故選:A6、D【解析】從指定位置起依次讀兩位數(shù)碼,超出編號的數(shù)刪除.【詳解】根據題意,從隨機數(shù)表第9行第5列的數(shù)1開始向右讀,依次選出的號碼數(shù)是:12,34,29,56,07,52;所以第6個個體是52.故選:D.7、B【解析】設點,其中,,求得,且有,,利用兩角和的正切公式可求得的值,進而可求得的值,即可得出該雙曲線的漸近線的方程.【詳解】易知點、,設點,其中,,且,,且,,,所以,,,因為,所以,,則,因此,該雙曲線漸近線方程為.故選:B.8、D【解析】由離心率及橢圓參數(shù)關系可得,進而可得.【詳解】因為,則,所以.故選:D9、D【解析】經判斷點在圓內,與半徑相連,所以與垂直時弦長最短,最長為直徑【詳解】將代入圓方程得:,所以點在圓內,連接,當時,弦長最短,,所以弦長,當過圓心時,最長等于直徑8,所以的取值范圍是故選:D10、C【解析】由題意,設,直線方程為,則由點到直線的距離公式求出點到直線的距離,再聯(lián)立直線與拋物線方程,由韋達定理及弦長公式求出,進而可得,結合即可得答案.【詳解】解:因為拋物線的性質:在拋物線上任意一點處的切線方程為,設,所以在點處的切線方程為,在點B處的切線方程為,因為兩條切線都經過點,所以,,所以直線的方程為,即,點到直線的距離為,聯(lián)立直線與拋物線方程有,消去得,由得,,由韋達定理得,所以弦長,所以,整理得,即,解得,又所以.故選:C.11、B【解析】根據基本初等函數(shù)的求導公式和求導法則即可求解判斷.【詳解】,故A錯誤;,故B正確;,故C錯誤;,故D錯誤.故選:B.12、C【解析】當時可得,可得答案.【詳解】當時可得所以方程表示的曲線經過的一點是,且其它點都不滿足方程,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設雙曲線的方程為,將點代入方程可求的值,從而可得結果【詳解】設與雙曲線有共同的漸近線的雙曲線的方程為,該雙曲線經過點,所求的雙曲線方程為:,整理得故答案為【點睛】本題考查雙曲線的方程與簡單性質,意在考查靈活應用所學知識解答問題的能力,屬于中檔題.與共漸近線的雙曲線方程可設為,只需根據已知條件求出即可.14、6【解析】根據拋物線的定義把的長轉化為到準線的距離為,進而數(shù)形結合求出最小值.【詳解】易知為拋物線的焦點,設到準線的距離為,則,而的最小值為到準線的距離,故的最小值為.故答案為:615、【解析】設,表示出,消去y,利用二次函數(shù)求最值即可.【詳解】設,則.所以當x=1時,最小.故答案為:.16、##【解析】利用直線所過點求得直線的斜率,從而求得.【詳解】由圖象可知直線過,所以直線的斜率為,所以.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)橢圓的標準方程為(2)面積的最大值為【解析】(1)由題意得,再由,標準方程為;(2)①當?shù)男甭什淮嬖跁r,不妨取;②當?shù)男甭蚀嬖跁r,設的方程為,聯(lián)立方程組,又直線的距離點到直線的距離為面積的最大值為.試題解析:(1)由題意得,解得,∵,∴,,故橢圓的標準方程為(2)①當直線的斜率不存在時,不妨取,故;②當直線的斜率存在時,設直線的方程為,聯(lián)立方程組,化簡得,設點到直線的距離因為是線段的中點,所以點到直線的距離為,∴綜上,面積的最大值為.【點睛】本題主要考查橢圓的標準方程及其性質、點到直線的距離、弦長公式和三角形面積公式等知識,涉及函數(shù)與方程思想、數(shù)形結合思想分類與整合、轉化與化歸等思想,并考查運算求解能力和邏輯推理能力,屬于較難題型.第一小題由題意由方程思想建立方程組求得標準方程為;(2)利用分類與整合思想分當?shù)男甭什淮嬖谂c存在兩種情況求解,在斜率存在時,由舍而不求法求得,再求得點到直線的距離為面積的最大值為.18、(1)證明見解析,(2)【解析】(1)根據公式得到,得到,再根據等比數(shù)列公式得到答案.(2)根據等差數(shù)列定義得到,再利用錯位相減法計算得到答案.【小問1詳解】,當時,,得到;當時,,兩式相減得到,整理得到,即,故,數(shù)列是首項為,公比為的等比數(shù)列,,即,驗證時滿足條件,故.【小問2詳解】,故,,,兩式相減得到:,整理得到:,故.19、(1)(2)77(3)【解析】(1)根據給定條件結合頻率分布直方圖中各小矩形面積和為1的特點列式計算即得.(2)利用頻率分布直方圖求平均數(shù)的方法直接列式計算即得.(3)求出成績在內的學生及男女生人數(shù),再用列舉法即可求出概率.【小問1詳解】由頻率分布直方圖得,解得,所以圖中值是0.020.【小問2詳解】由頻率分布直方圖得這組數(shù)據的平均數(shù):,所以這組數(shù)據的平均數(shù)為77.【小問3詳解】數(shù)學成績在內的人數(shù)為(人),其中男生人數(shù)為(人),則女生人數(shù)為人,記名男生分別為,,名女生分別為,,,從數(shù)學成績在內的人中隨機抽取人進行分析的基本事件為:,共個不同結果,它們等可能,其中人中恰有名女生的基本事件為,共種結果,所以人中恰有名女生的概率為為.20、(1)0.04;(2).【解析】(1)根據頻率的計算公式,結合概率之和為1,即可求得參數(shù);(2)根據題意求得抽樣比以及第三組和第四組各抽取的人數(shù),再列舉所有可能抽取的情況,找出滿足題意的情況,利用古典概型的概率計算公式即可求得結果.【小問1詳解】第一組頻率為,第二組的頻率為,則第一組與第二組的頻率之和為,又,故.【小問2詳解】第3組的人數(shù)為,第4組的人數(shù)為,第5組的人數(shù)為,因為第3,4,5組共有60名志愿者,所以利用分層抽樣的方法在60名志題者中抽收6名志愿者,每組抽取的人數(shù)分別為:第3組:;第4組:;第5組:.記第3組的3名志愿者為,第4組的2名志愿者為,則從5名志愿者中抽取2名志愿者有:,,共有10種其
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東松山職業(yè)技術學院《綠色制造與可持續(xù)發(fā)展》2023-2024學年第一學期期末試卷
- 廣東水利電力職業(yè)技術學院《工程項目管理》2023-2024學年第一學期期末試卷
- 廣東汕頭幼兒師范高等??茖W校《中國古代文論》2023-2024學年第一學期期末試卷
- 廣東嶺南職業(yè)技術學院《行業(yè)分析》2023-2024學年第一學期期末試卷
- 【名師一號】2020-2021學年高中英語北師大版必修4-雙基限時練19
- 三年級英語上冊單詞
- 《肩關節(jié)解剖m》課件
- 語文書六年級上冊人教版
- 【全程復習方略】2021年高中化學選修三單元質量評估(二)第2章-分子結構與性質-
- 【2021屆備考】2020全國名校數(shù)學試題分類解析匯編(12月第一期):B9函數(shù)與方程
- 物理八年級上冊凸透鏡成像的規(guī)律(課件)
- 2024-2025學年新教材高中地理 第3單元 區(qū)域聯(lián)系與區(qū)域發(fā)展 第1節(jié) 大都市輻射對區(qū)域發(fā)展的影響-以上海市為例說課稿 魯教版選擇性必修2
- 物業(yè)充電樁合作加盟協(xié)議書范文
- 機械工安全操作規(guī)程有哪些(11篇)
- 2024年執(zhí)業(yè)醫(yī)師考試-中醫(yī)執(zhí)業(yè)醫(yī)師考試近5年真題集錦(頻考類試題)帶答案
- 2024-2030年中國真空滅弧室行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 全國計算機一級考試題庫(附答案)
- 【飛科電器公司基于杜邦分析法的財務分析案例(7700字論文)】
- 廣東省深圳市(2024年-2025年小學四年級語文)統(tǒng)編版期末考試(上學期)試卷及答案
- 兒童呼吸道合胞病毒感染臨床診治試題
- 2021-2022學年廣東省廣州市花都區(qū)六年級(上)期末英語試卷
評論
0/150
提交評論