版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
內(nèi)蒙古太仆寺旗寶昌第一中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.?dāng)?shù)列是公差不為零的等差數(shù)列,為其前n項(xiàng)和.若對(duì)任意的,都有,則的值不可能是()A. B.2C. D.32.設(shè)為直線上任意一點(diǎn),過總能作圓的切線,則的最大值為()A. B.1C. D.3.如圖,函數(shù)的圖象在P點(diǎn)處的切線方程是,若點(diǎn)的橫坐標(biāo)是5,則()A. B.1C.2 D.04.某中學(xué)舉行黨史學(xué)習(xí)教育知識(shí)競(jìng)賽,甲隊(duì)有、、、、、共名選手其中名男生名女生,按比賽規(guī)則,比賽時(shí)現(xiàn)場(chǎng)從中隨機(jī)抽出名選手答題,則至少有名女同學(xué)被選中的概率是()A. B.C. D.5.某社區(qū)醫(yī)院為了了解社區(qū)老人與兒童每月患感冒的人數(shù)y(人)與月平均氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某4個(gè)月的患?。ǜ忻埃┤藬?shù)與當(dāng)月平均氣溫,其數(shù)據(jù)如下表:月平均氣溫x(℃)171382月患病y(人)24334055由表中數(shù)據(jù)算出線性回歸方程中的,氣象部門預(yù)測(cè)下個(gè)月的平均氣溫約為9℃,據(jù)此估計(jì)該社區(qū)下個(gè)月老年人與兒童患病人數(shù)約為()A.38 B.40C.46 D.586.已知橢圓,則下列結(jié)論正確的是()A.長(zhǎng)軸長(zhǎng)為2 B.焦距為C.短軸長(zhǎng)為 D.離心率為7.已知雙曲線C:(,)的一條漸近線被圓所截得的弦長(zhǎng)為2,的C的離心率為()A. B.C.2 D.8.如圖,是對(duì)某位同學(xué)一學(xué)期次體育測(cè)試成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì)得到的散點(diǎn)圖,關(guān)于這位同學(xué)的成績(jī)分析,下列結(jié)論錯(cuò)誤的是()A.該同學(xué)的體育測(cè)試成績(jī)總的趨勢(shì)是在逐步提高,且次測(cè)試成績(jī)的極差超過分B.該同學(xué)次測(cè)試成績(jī)的眾數(shù)是分C.該同學(xué)次測(cè)試成績(jī)的中位數(shù)是分D.該同學(xué)次測(cè)試成績(jī)與測(cè)試次數(shù)具有相關(guān)性,且呈正相關(guān)9.已知函數(shù),那么“”是“在上為增函數(shù)”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f(x)g(x)+f(x)g(x)<0且f(﹣1)=0則不等式f(x)g(x)<0的解集為A.(﹣1,0)∪(1,+∞) B.(﹣1,0)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)∪(0,1)11.如圖所示,正方體的棱長(zhǎng)為2,以其所有面的中心為頂點(diǎn)的多面體的表面積為()A. B.C.8 D.1212.如圖在中,,,在內(nèi)作射線與邊交于點(diǎn),則使得的概率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線()上的一點(diǎn)到其焦點(diǎn)F的距離______.14.牛頓迭代法又稱牛頓-拉夫遜方法,它是牛頓在17世紀(jì)提出的一種在實(shí)數(shù)集上近似求解方程根的一種方法.具體步驟如下:設(shè)r是函數(shù)y=f(x)的一個(gè)零點(diǎn),任意選取x0作為r的初始近似值,作曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線l1,設(shè)l1與x軸交點(diǎn)的橫坐標(biāo)為x1,并稱x1為r的1次近似值;作曲線y=f(x)在點(diǎn)(x1,f(x1))處的切線l2,設(shè)l2與x軸交點(diǎn)的橫坐標(biāo)為x2,并稱x2為r的2次近似值.一般的,作曲線y=f(x)在點(diǎn)(xn,f(xn))(n∈N)處的切線ln+1,記ln+1與x軸交點(diǎn)的橫坐標(biāo)為xn+1,并稱xn+1為r的n+1次近似值.設(shè)f(x)=x3+x-1的零點(diǎn)為r,取x0=0,則r的2次近似值為________15.焦點(diǎn)在軸上的雙曲線的離心率為,則的值為___________.16.某射箭運(yùn)動(dòng)員在一次射箭訓(xùn)練中射靶10次,命中環(huán)數(shù)如下:8,9,8,10,6,7,9,10,8,5,則命中環(huán)數(shù)的平均數(shù)為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,直線(1)判斷直線l與圓C的位置關(guān)系;(2)過點(diǎn)作圓C的切線,求切線的方程18.(12分)如圖,P為圓上一動(dòng)點(diǎn),點(diǎn)A坐標(biāo)為,線段AP的垂直平分線交直線BP于點(diǎn)Q(1)求點(diǎn)Q的軌跡E的方程;(2)過點(diǎn)A的直線l交E于C,D兩點(diǎn),若△BCD內(nèi)切圓的半徑為,求直線l的方程.19.(12分)三棱柱中,側(cè)面為菱形,,,,(1)求證:面面;(2)在線段上是否存在一點(diǎn)M,使得二面角為,若存在,求出的值,若不存在,請(qǐng)說明理由20.(12分)已知雙曲線(1)若,求雙曲線的焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)和漸近線方程;(2)若雙曲線的離心率為,求實(shí)數(shù)的取值范圍21.(12分)已知點(diǎn)在拋物線()上,過點(diǎn)A且斜率為1直線與拋物線的另一個(gè)交點(diǎn)為B(1)求p的值和拋物線的焦點(diǎn)坐標(biāo);(2)求弦長(zhǎng)22.(10分)已知橢圓的左、右焦點(diǎn)分別是,點(diǎn)P是橢圓C上任一點(diǎn),若面積的最大值為,且離心率(1)求C的方程;(2)A,B為C的左、右頂點(diǎn),若過點(diǎn)且斜率不為0的直線交C于M,N兩點(diǎn),證明:直線與的交點(diǎn)在一條定直線上
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由已知建立不等式組,可求得,再對(duì)各選項(xiàng)逐一驗(yàn)證可得選項(xiàng).【詳解】解:因?yàn)閿?shù)列是公差不為零的等差數(shù)列,為其前n項(xiàng)和.對(duì)任意的,都有,所以,即,解得,則當(dāng)時(shí),,不成立;當(dāng)時(shí),,成立;當(dāng)時(shí),,成立;當(dāng)時(shí),,成立;所以的值不可能是,故選:A.2、D【解析】根據(jù)題意,判斷點(diǎn)與圓的位置關(guān)系以及直線與圓的位置關(guān)系,根據(jù)直線與圓的位置關(guān)系,即可求得的最大值.【詳解】因?yàn)檫^過總能作圓的切線,故點(diǎn)在圓外或圓上,也即直線與圓相離或相切,則,即,解得,故的最大值為.故選:D.3、C【解析】函數(shù)的圖象在點(diǎn)P處的切線方程是,所以,在P處的導(dǎo)數(shù)值為切線的斜率,2,故選C考點(diǎn):本題主要考查導(dǎo)數(shù)的幾何意義點(diǎn)評(píng):簡(jiǎn)單題,切線的斜率等于函數(shù)在切點(diǎn)的導(dǎo)函數(shù)值4、D【解析】現(xiàn)場(chǎng)選名選手,共種情況,設(shè),,,四位同學(xué)為男同學(xué)則沒有女同學(xué)被選中的情況,共有6種,利用對(duì)立事件進(jìn)行求解,即可得到答案;【詳解】現(xiàn)場(chǎng)選名選手,基本事件有:,,,,,,,,,,,,,,共種情況,不妨設(shè),,,四位同學(xué)為男同學(xué)則沒有女同學(xué)被選中的情況是:,,,,,共種,則至少有一名女同學(xué)被選中的概率為.故選:.5、B【解析】由表格數(shù)據(jù)求樣本中心,根據(jù)線性回歸方程過樣本中心點(diǎn),將點(diǎn)代入方程求參數(shù),寫出回歸方程,進(jìn)而估計(jì)下個(gè)月老年人與兒童患病人數(shù).【詳解】由表格得為,由回歸方程中的,∴,解得,即,當(dāng)時(shí),.故選:B.6、D【解析】根據(jù)已知條件求得,由此確定正確答案.【詳解】依題意橢圓,所以,所以長(zhǎng)軸長(zhǎng)為,焦距為,短軸長(zhǎng)為,ABC選項(xiàng)錯(cuò)誤.離心率為,D選項(xiàng)正確.故選:D7、C【解析】由雙曲線的方程可得漸近線的直線方程,根據(jù)直線和圓相交弦長(zhǎng)可得圓心到直線的距離,進(jìn)而可得,結(jié)合,可得離心率.【詳解】雙曲線的一條漸近線方程為,即,被圓所截得的弦長(zhǎng)為2,所以圓心到直線的距離為,,解得,故選:C【點(diǎn)睛】本題考查了雙曲線的漸近線和離心率、直線和圓的相交弦、點(diǎn)到直線距離等基本知識(shí),考查了運(yùn)算求解能力和邏輯推理能力,轉(zhuǎn)化的數(shù)學(xué)思想,屬于一般題目.8、C【解析】根據(jù)給定的散點(diǎn)圖,逐一分析各個(gè)選項(xiàng)即可判斷作答.【詳解】對(duì)于A,由散點(diǎn)圖知,8次測(cè)試成績(jī)總體是依次增大,極差為,A正確;對(duì)于B,散點(diǎn)圖中8個(gè)數(shù)據(jù)的眾數(shù)是48,B正確;對(duì)于C,散點(diǎn)圖中的8個(gè)數(shù)由小到大排列,最中間兩個(gè)數(shù)都是48,則次測(cè)試成績(jī)的中位數(shù)是分,C不正確;對(duì)于D,散點(diǎn)圖中8個(gè)點(diǎn)落在某條斜向上的直線附近,則次測(cè)試成績(jī)與測(cè)試次數(shù)具有相關(guān)性,且呈正相關(guān),D正確.故選:C9、A【解析】對(duì)函數(shù)進(jìn)行求導(dǎo)得,進(jìn)而得時(shí),,在上為增函數(shù),然后判斷充分性和必要性即可.【詳解】解:因?yàn)榈亩x域是,所以,當(dāng)時(shí),,在上為增函數(shù).所以在上為增函數(shù),是充分條件;反之,在上為增函數(shù)或,不是必要條件.故選:A.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,屬于中檔題.10、A【解析】構(gòu)造函數(shù)h(x)=f(x)g(x),由已知得當(dāng)x<0時(shí),h(x)<0,所以函數(shù)y=h(x)在(﹣∞,0)單調(diào)遞減,又因?yàn)閒(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),得函數(shù)y=h(x)為R上的奇函數(shù),所以函數(shù)y=h(x)在(0,+∞)單調(diào)遞減,得到f(x)g(x)<0不等式的解集【詳解】設(shè)h(x)=f(x)g(x),因?yàn)楫?dāng)x<0時(shí),f(x)g(x)+f(x)g(x)<0,所以當(dāng)x<0時(shí),h(x)<0,所以函數(shù)y=h(x)在(﹣∞,0)單調(diào)遞減,又因?yàn)閒(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),所以函數(shù)y=h(x)為R上的奇函數(shù),所以函數(shù)y=h(x)在(0,+∞)單調(diào)遞減,因?yàn)閒(﹣1)=0,所以函數(shù)y=h(x)的大致圖象如下:所以等式f(x)g(x)<0的解集為(﹣1,0)∪(1,+∞)故選A【點(diǎn)睛】本題考查導(dǎo)數(shù)乘法法則、導(dǎo)數(shù)的符號(hào)與函數(shù)單調(diào)性的關(guān)系;奇函數(shù)的單調(diào)性在對(duì)稱區(qū)間上一致,屬于中檔題11、B【解析】首先確定幾何體的空間結(jié)構(gòu)特征,然后求解其表面積即可.【詳解】由題意知,該幾何體是一個(gè)由8個(gè)全等的正三角形圍成的多面體,正三角形的邊長(zhǎng)為:,正三角形邊上的一條高為:,所以一個(gè)正三角形的面積為:,所以多面體的表面積為:.故選:B12、C【解析】由題意可得,根據(jù)三角形中“大邊對(duì)大角,小邊對(duì)小角”的性質(zhì),將轉(zhuǎn)化為求的概率,又因?yàn)椋?,從而可得的概率【詳解】解:在中,,,所以,即,要使得,則,又因?yàn)?,,則的概率是故選:C【點(diǎn)睛】本題考查幾何概型及其計(jì)算方法的知識(shí),屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將點(diǎn)坐標(biāo)代入方程中可求得拋物線的方程,從而可得到焦點(diǎn)坐標(biāo),進(jìn)而可求出【詳解】解:為拋物線上一點(diǎn),即有,,拋物線的方程為,焦點(diǎn)為,即有.故答案為:5.14、##【解析】利用導(dǎo)數(shù)的幾何意義根據(jù)r的2次近似值的定義求解即可【詳解】由,得,取,,所以過點(diǎn)作曲線的切線的斜率為1,所以直線的方程為,其與軸交點(diǎn)的橫坐標(biāo)為1,即,因?yàn)?,所以過點(diǎn)作曲線的切線的斜率為4,所以直線的方程為,其與軸交點(diǎn)的橫坐標(biāo)為,即,故答案為:15、【解析】將雙曲線的方程化為標(biāo)準(zhǔn)式,可得出、,由此可得出關(guān)于的等式,即可解得的值.【詳解】雙曲線的標(biāo)準(zhǔn)方程為,由題意可得,則,,,所以,,解得.故答案為:.16、【解析】直接利用求平均數(shù)的公式即可求解.【詳解】由已知得數(shù)據(jù)的平均數(shù)為,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)相交.(2)或.【解析】(1)先判斷出直線恒過定點(diǎn)(2,1),由(2,1)在圓內(nèi),即可判斷;(2)分斜率存在與不存在兩種情況,利用幾何法求解.【小問1詳解】直線方程,即,則直線恒過定點(diǎn)(2,1).因?yàn)椋瑒t點(diǎn)(2,1)位于圓的內(nèi)部,故直線與圓相交.【小問2詳解】直線斜率不存在時(shí),直線滿足題意;②直線斜率存在的時(shí)候,設(shè)直線方程為,即.因?yàn)橹本€與圓相切,所以圓心到直線的距離等于半徑,即,解得:,則直線方程為:.綜上可得,直線方程或.18、(1)(2)【解析】(1)連接,由,利用橢圓的定義求解;(2)設(shè)點(diǎn),,直線的方程為,與橢圓聯(lián)立,結(jié)合韋達(dá)定理,利用等面積法求解.【小問1詳解】解:連接,由題意知:,,即的軌跡為橢圓,其中,,,所以橢圓的標(biāo)準(zhǔn)方程為;【小問2詳解】設(shè)點(diǎn),,直線的方程為,與橢圓聯(lián)立,消去整理得,顯然成立,故,,由橢圓定義得的周長(zhǎng)為,則的面積,又由,得,從而得,即,整理得,解得,故,故直線的方程為.19、(1)證明見解析;(2)【解析】(1)取BC的中點(diǎn)O,連結(jié)AO、,在三角形中分別證明和,再利用勾股定理證明,結(jié)合線面垂直的判定定理可證明平面,再由面面垂直的判定定理即可證明結(jié)果.(2)建立空間直角坐標(biāo)系,假設(shè)點(diǎn)M存在,設(shè),求出M點(diǎn)坐標(biāo),然后求出平面的法向量,利用空間向量的方法根據(jù)二面角的平面角為可求出的值.【詳解】(1)取BC的中點(diǎn)O,連結(jié)AO,,,為等腰直角三角形,所以,;側(cè)面為菱形,,所以三角形為為等邊三角形,所以,又,所以,又,滿足,所以;因?yàn)椋云矫?,因?yàn)槠矫嬷?,所以平面平?(2)由(1)問知:兩兩垂直,以O(shè)為坐標(biāo)原點(diǎn),為軸,為軸,為軸建立空間之間坐標(biāo)系.則,,,,若存在點(diǎn)M,則點(diǎn)M在上,不妨設(shè),則有,則,有,,設(shè)平面的法向量為,則解得:平面的法向量為則解得:或(舍)故存在點(diǎn)M,.【點(diǎn)睛】本題考查立體幾何探索是否存在的問題,屬于中檔題.方法點(diǎn)睛:(1)判斷是否存在的問題,一般先假設(shè)存在;(2)設(shè)出點(diǎn)坐標(biāo),作為已知條件,代入計(jì)算;(3)根據(jù)結(jié)果,判斷是否存在.20、(1)焦點(diǎn)坐標(biāo)為,,頂點(diǎn)坐標(biāo)為,,漸近線方程為;(2).【解析】(1)根據(jù)雙曲線方程確定,即可按照概念對(duì)應(yīng)寫出焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)和漸近線方程;(2)先求(用表示),再根據(jù)解不等式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 展會(huì)宣傳推廣合同(2篇)
- 小賣鋪?zhàn)赓U合同(2篇)
- 2025年度建筑密封硅酮膠招標(biāo)采購(gòu)合同3篇
- 二零二五年度智慧城市物聯(lián)網(wǎng)設(shè)備采購(gòu)合同2篇
- 二零二五版果園果樹種植技術(shù)指導(dǎo)與承包合同3篇
- 2024版短期貸款合同范例3篇
- 二零二五年度消防工程監(jiān)理合同2篇
- 二零二五年度建筑工程項(xiàng)目招投標(biāo)與合同履約擔(dān)保服務(wù)合同3篇
- 二零二五版股權(quán)代持糾紛調(diào)解與風(fēng)險(xiǎn)防范合同5篇
- 二零二五年度不動(dòng)產(chǎn)權(quán)屬轉(zhuǎn)移擔(dān)保合同3篇
- 2025年度影視制作公司兼職制片人聘用合同3篇
- 兒童糖尿病的飲食
- 2025屆高考語文復(fù)習(xí):散文的結(jié)構(gòu)與行文思路 課件
- 干細(xì)胞項(xiàng)目商業(yè)計(jì)劃書
- 浙江省嘉興市2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期期末試題含解析
- 2024年高考新課標(biāo)Ⅱ卷語文試題講評(píng)課件
- 回收二手機(jī)免責(zé)協(xié)議書模板
- 2023年系統(tǒng)性硬化病診斷及診療指南
- 外科醫(yī)師手術(shù)技能評(píng)分標(biāo)準(zhǔn)
- 《英語教師職業(yè)技能訓(xùn)練簡(jiǎn)明教程》全冊(cè)配套優(yōu)質(zhì)教學(xué)課件
- 采購(gòu)控制程序
評(píng)論
0/150
提交評(píng)論