2025屆吉林省延邊市汪清縣第六中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2025屆吉林省延邊市汪清縣第六中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2025屆吉林省延邊市汪清縣第六中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2025屆吉林省延邊市汪清縣第六中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2025屆吉林省延邊市汪清縣第六中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆吉林省延邊市汪清縣第六中學(xué)高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知過點的直線與圓相切,且與直線垂直,則()A. B.C. D.2.某綜合實踐小組設(shè)計了一個“雙曲線型花瓶”.他們的設(shè)計思路是將某雙曲線的一部分(圖1中A,C之間的曲線)繞其虛軸所在直線l旋轉(zhuǎn)一周,得到花瓶的側(cè)面,花瓶底部是平整的圓面,如圖2.該小組給出了圖1中的相關(guān)數(shù)據(jù):,,,,,其中B是雙曲線的一個頂點.小組中甲、乙、丙、丁四位同學(xué)分別用不同的方法估算了該花瓶的容積(忽略瓶壁和底部的厚度),結(jié)果如下表所示學(xué)生甲乙丙丁估算結(jié)果()其中估算結(jié)果最接近花瓶的容積的同學(xué)是()(參考公式:,,)A.甲 B.乙C.丙 D.丁3.在正方體的12條棱中任選3條,其中任意2條所在的直線都是異面直線的概率為()A. B.C. D.4.為了了解某地區(qū)的名學(xué)生的數(shù)學(xué)成績,打算從中抽取一個容量為的樣本,現(xiàn)用系統(tǒng)抽樣的方法,需從總體中剔除個個體,在整個過程中,每個個體被剔除的概率和每個個體被抽取的概率分別為()A. B.C. D.5.已知拋物線上一點到其焦點的距離為5,雙曲線的左頂點為A,若雙曲線的一條漸近線與直線AM平行,則實數(shù)n的值是()A. B.C. D.6.已知等比數(shù)列的前項和為,則關(guān)于的方程的解的個數(shù)為()A.0 B.1C.無數(shù)個 D.0或無數(shù)個7.在正方體中中,,若點P在側(cè)面(不含邊界)內(nèi)運動,,且點P到底面的距離為3,則異面直線與所成角的余弦值是()A. B.C. D.8.已知曲線,則曲線W上的點到原點距離的最小值是()A. B.C. D.9.已知命題p:,,則命題p的否定為()A., B.,C, D.,10.如圖,在平行六面體中,底面是邊長為的正方形,若,且,則的長為()A. B.C. D.11.若雙曲線的一條漸近線方程為.則()A. B.C.2 D.412.設(shè),,,則,,大小關(guān)系為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,,若,則_______14.已知數(shù)列則是這個數(shù)列的第________項.15.已知等比數(shù)列的前n項和為,且滿足,則_____________16.已知實數(shù)x,y滿足約束條件,則的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知一張紙上畫有半徑為4的圓O,在圓O內(nèi)有一個定點A,且,折疊紙片,使圓上某一點剛好與A點重合,這樣的每一種折法,都留下一條直線折痕,當取遍圓上所有點時,所有折痕與的交點形成的曲線記為C.(1)求曲線C的焦點在軸上的標準方程;(2)過曲線C的右焦點(左焦點為)的直線l與曲線C交于不同的兩點M,N,記的面積為S,試求S的取值范圍.18.(12分)某快餐配送平臺針對外賣員送餐準點情況制定了如下的考核方案:每一單自接單后在規(guī)定時間內(nèi)送達、延遲5分鐘內(nèi)送達、延遲5至10分鐘送達、其他延遲情況,分別評定為四個等級,各等級依次獎勵3元、獎勵0元、罰款3元、罰款6元.假定評定為等級的概率分別是.(1)若某外賣員接了一個訂單,求其不被罰款的概率;(2)若某外賣員接了兩個訂單,且兩個訂單互不影響,求這兩單獲得的獎勵之和為3元的概率.19.(12分)在等差數(shù)列中,,前10項和(1)求列通項公式;(2)若數(shù)列是首項為1,公比為2的等比數(shù)列,求的前8項和20.(12分)在中,內(nèi)角A,B,C對應(yīng)的邊分別為a,b,c,已知.(1)求B;(2)若,,求b的值.21.(12分)定義:設(shè)是空間的一個基底,若向量,則稱有序?qū)崝?shù)組為向量在基底下的坐標.已知是空間的單位正交基底,是空間的另一個基底,若向量在基底下的坐標為(1)求向量在基底下的坐標;(2)求向量在基底下的模22.(10分)已知橢圓的離心率為,右焦點為F,且E上一點P到F的最大距離3(1)求橢圓E的方程;(2)若A,B為橢圓E上的兩點,線段AB過點F,且其垂直平分線交x軸于H點,,求

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】首先由點的坐標滿足圓的方程來確定點在圓上,然后求出過點的圓的切線方程,最后由兩直線的垂直關(guān)系轉(zhuǎn)化為斜率關(guān)系求解.【詳解】由題知,圓的圓心,半徑.因為,所以點在圓上,所以過點的圓的切線與直線垂直,設(shè)切線的斜率,則有,即,解得.因為直線與切線垂直,所以,解得.故選:B.2、D【解析】根據(jù)幾何體可分割為圓柱和曲邊圓錐,利用圓柱和圓錐的體積公式對幾何體的體積進行估計即可.【詳解】可將幾何體看作一個以為半徑,高為的圓柱,再加上兩個曲邊圓錐,其中底面半徑分別為,,高分別為,,,,所以花瓶的容積,故最接近的是丁同學(xué)的估算,故選:D3、B【解析】根據(jù)正方體的性質(zhì)確定3條棱兩兩互為異面直線的情況數(shù),結(jié)合組合數(shù)及古典概率的求法,求任選3條其中任意2條所在的直線是異面直線的概率.【詳解】如下圖,正方體中如:中任意2條所在的直線都是異面直線,∴這樣的3條直線共有8種情況,∴任選3條,其中任意2條所在的直線都是異面直線的概率為.故選:B.4、D【解析】根據(jù)每個個體被抽取的概率都是相等的、被剔除的概率也都是相等的,分別由剔除的個數(shù)和抽取的樣本容量除以總體個數(shù)即可求解.【詳解】根據(jù)系統(tǒng)抽樣的定義和方法可知:每個個體被抽取的概率都是相等的,每個個體被剔除的概率也都是相等的,所以每個個體被剔除的概率為,每個個體被抽取的概率為,故選:D.5、C【解析】首先根據(jù)拋物線焦半徑公式得到,從而得到,再根據(jù)曲線的一條漸近線與直線AM平行,斜率相等求解即可.【詳解】由題知:,解得,拋物線.雙曲線的左頂點為,,因為雙曲線的一條漸近線與直線平行,所以,解得.故選:C6、D【解析】利用等比數(shù)列的求和公式討論公比的取值即得.【詳解】設(shè)等比數(shù)列的公比為,當時,,因為,所以無解,即方程的解的個數(shù)為0,當時,,所以時,方程有無數(shù)個偶數(shù)解,當時,方程無解,綜上,關(guān)于的方程的解的個數(shù)為0或無數(shù)個.故選:D.7、A【解析】如圖建立空間直角坐標系,先由,且點P到底面的距離為3,確定點P的位置,然后利用空間向量求解即可【詳解】如圖,以為坐標原點,以所在的直線分別為軸,建立空間直角坐標系,則,所以,所以,所以,因為,所以平面,因為平面平面,點P在側(cè)面(不含邊界)內(nèi)運動,,所以,因為點P到底面的距離為3,所以,所以,因為,所以異面直線與所成角的余弦值為,故選:A8、A【解析】化簡方程,得到,求出的范圍,作出曲線的圖形,通過圖象觀察,即可得到原點距離的最小值詳解】解:即為,兩邊平方,可得,即有,則作出曲線的圖形,如下:則點與點或的距離最小,且為故選:A9、A【解析】根據(jù)特稱命題的否定是全稱命題,結(jié)合已知條件,即可求得結(jié)果.【詳解】因為命題p:,,故命題p的否定為:,.故選:A.10、D【解析】由向量線性運算得,利用數(shù)量積的定義和運算律可求得,由此可求得.【詳解】由題意得:,,且,又,,,,.故選:D.11、C【解析】求出漸近線方程為,列出方程求出.【詳解】雙曲線的漸近線方程為,因為,所以,所以.故選:C12、C【解析】由,可得,,故選C.考點:指數(shù)函數(shù)性質(zhì)二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由遞推式,結(jié)合依次求出、即可.【詳解】由,可得:,又,可得:.故答案為:.14、12【解析】根據(jù)被開方數(shù)的特點求出數(shù)列的通項公式,最后利用通項公式進行求解即可.【詳解】數(shù)列中每一項被開方數(shù)分別為:6,10,14,18,22,…,因此這些被開方數(shù)是以6為首項,4為公差的等差數(shù)列,設(shè)該等差數(shù)列為,其通項公式為:,設(shè)數(shù)列為,所以,于是有,故答案為:15、##31.5【解析】根據(jù)等比數(shù)列通項公式,求出,代入求和公式,即可得答案.【詳解】因為數(shù)列為等比數(shù)列,所以,又,所以,所以.故答案為:16、【解析】作出該不等式表示的平面區(qū)域,由的幾何意義結(jié)合距離公式得出答案.【詳解】該不等式組表示的平面區(qū)域,如下圖所示過點作直線的垂線,垂足為因為表示原點與可行域中點之間的距離,所以的最小值為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)﹒【解析】(1)根據(jù)題意,作出圖像,可得,由此可知M的軌跡C為以O(shè)、A為焦點的橢圓;(2)分為l斜率存在和不存在時討論,斜率存在時,直線方程和橢圓方程聯(lián)立,用韋達定理表示的面積,根據(jù)變量范圍可求面積的最大值﹒【小問1詳解】以O(shè)A中點G坐標原點,OA所在直線為x軸建立平面直角坐標系,如圖:∴可知,,設(shè)折痕與和分別交于M,N兩點,則MN垂直平分,∴,又∵,∴,∴M的軌跡是以O(shè),A為焦點,4為長軸的橢圓.∴M的軌跡方程C為;【小問2詳解】設(shè),,則的周長為當軸時,l的方程為,,,當l與x軸不垂直時,設(shè),由得,∵>0,∴,,,令,則,,∵,∴,∴.綜上可知,S的取值范圍是18、(1)(2)【解析】(1)利用互斥事件的概率公式,即可求解;(2)由條件可知兩單共獲得的獎勵為3元即事件,同樣利用互斥事件和的概率,即可求解.【小問1詳解】設(shè)事件分別表示“被評為等級”,由題意,事件兩兩互斥,所以,又“不被罰款”,所以.因此“不被罰款”概率為;【小問2詳解】設(shè)事件表示“第單被評為等級”,,則“兩單共獲得的獎勵為3元”即事件,且事件彼此互斥,又,所以.19、(1);(2)347.【解析】(1)設(shè)等差數(shù)列的公差為,解方程組即得解;(2)先求出,再分組求和得解.【詳解】解:(1)設(shè)等差數(shù)列的公差為,則解得所以(2)由題意,,所以所以的前8項和為20、(1);(2).【解析】(1)利用正弦定理,將邊化角轉(zhuǎn)化,即可求得;(2)利用余弦定理,結(jié)合(1)中所求,即可求得.【小問1詳解】在中,由正弦定理得,因為,所以,所以,又因為,所以.【小問2詳解】在中,由余弦定理得,代入數(shù)據(jù)解得,所以21、(1)(2)【解析】(1)根據(jù)向量在基底下的坐標為,得出向量在基底下的坐標;(2)根據(jù)向量在基底下的坐標直接計算模即可【小問1詳解】因為向量在基底下坐標為,則,所以向量在基底下的坐標為.【小問2詳解】因為向量在基底下的坐標為,所以向量在基底下的模為.22

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論