版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆廣東省廣州市第三中學(xué)第二學(xué)期教學(xué)質(zhì)量檢測(cè)試題高三數(shù)學(xué)試題(二模)注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在我國(guó)傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個(gè)物質(zhì)類別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個(gè),這二者具有相生關(guān)系的概率是()A.0.2 B.0.5 C.0.4 D.0.82.若點(diǎn)(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或3.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.634.已知非零向量滿足,若夾角的余弦值為,且,則實(shí)數(shù)的值為()A. B. C.或 D.5.函數(shù)的單調(diào)遞增區(qū)間是()A. B. C. D.6.已知圓錐的高為3,底面半徑為,若該圓錐的頂點(diǎn)與底面的圓周都在同一個(gè)球面上,則這個(gè)球的體積與圓錐的體積的比值為()A. B. C. D.7.若不等式在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),則實(shí)數(shù)的取值范圍是()A. B.C. D.8.已知等差數(shù)列的前n項(xiàng)和為,且,,若(,且),則i的取值集合是()A. B. C. D.9.正項(xiàng)等比數(shù)列中,,且與的等差中項(xiàng)為4,則的公比是()A.1 B.2 C. D.10.已知,則的大小關(guān)系是()A. B. C. D.11.已知符號(hào)函數(shù)sgnxf(x)是定義在R上的減函數(shù),g(x)=f(x)﹣f(ax)(a>1),則()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]12.若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是拋物線的焦點(diǎn),過(guò)作直線與相交于兩點(diǎn),且在第一象限,若,則直線的斜率是_________.14.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則函數(shù)的最大值為______.15.觀察下列式子,,,,……,根據(jù)上述規(guī)律,第個(gè)不等式應(yīng)該為__________.16.函數(shù)在區(qū)間(-∞,1)上遞增,則實(shí)數(shù)a的取值范圍是____三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),.(1)當(dāng)時(shí),求函數(shù)的值域;(2),,求實(shí)數(shù)的取值范圍.18.(12分)設(shè)數(shù)列的前列項(xiàng)和為,已知.(1)求數(shù)列的通項(xiàng)公式;(2)求證:.19.(12分)如圖,四邊形是邊長(zhǎng)為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.20.(12分)在中,角的對(duì)邊分別為.已知,.(1)若,求;(2)求的面積的最大值.21.(12分)已知數(shù)列為公差不為零的等差數(shù)列,是數(shù)列的前項(xiàng)和,且、、成等比數(shù)列,.設(shè)數(shù)列的前項(xiàng)和為,且滿足.(1)求數(shù)列、的通項(xiàng)公式;(2)令,證明:.22.(10分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,以橢圓C左頂點(diǎn)T為圓心作圓,設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.(1)求橢圓C的方程;(2)求的最小值,并求此時(shí)圓T的方程;(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
利用列舉法,結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.【詳解】從五行中任取兩個(gè),所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點(diǎn)睛】本小題主要考查古典概型的計(jì)算,屬于基礎(chǔ)題.2、D【解析】
由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點(diǎn)睛】(1)本題主要考查點(diǎn)到直線的距離公式,意在考查學(xué)生對(duì)該知識(shí)的掌握水平和計(jì)算推理能力.(2)點(diǎn)到直線的距離.3、B【解析】
根據(jù)程序框圖中的循環(huán)結(jié)構(gòu)的運(yùn)算,直至滿足條件退出循環(huán)體,即可得出結(jié)果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.【點(diǎn)睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果,模擬程序運(yùn)行是解題的關(guān)鍵,屬于基礎(chǔ)題.4、D【解析】
根據(jù)向量垂直則數(shù)量積為零,結(jié)合以及夾角的余弦值,即可求得參數(shù)值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點(diǎn)睛】本題考查向量數(shù)量積的應(yīng)用,涉及由向量垂直求參數(shù)值,屬基礎(chǔ)題.5、D【解析】
利用輔助角公式,化簡(jiǎn)函數(shù)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性,并采用整體法,可得結(jié)果.【詳解】因?yàn)椋?,解得,即函?shù)的增區(qū)間為,所以當(dāng)時(shí),增區(qū)間的一個(gè)子集為.故選D.【點(diǎn)睛】本題考查了輔助角公式,考查正弦型函數(shù)的單調(diào)遞增區(qū)間,重點(diǎn)在于把握正弦函數(shù)的單調(diào)性,同時(shí)對(duì)于整體法的應(yīng)用,使問題化繁為簡(jiǎn),難度較易.6、B【解析】
計(jì)算求半徑為,再計(jì)算球體積和圓錐體積,計(jì)算得到答案.【詳解】如圖所示:設(shè)球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點(diǎn)睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學(xué)生的計(jì)算能力和空間想象能力.7、C【解析】
由題可知,設(shè)函數(shù),,根據(jù)導(dǎo)數(shù)求出的極值點(diǎn),得出單調(diào)性,根據(jù)在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),轉(zhuǎn)化為在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),結(jié)合圖象,可求出實(shí)數(shù)的取值范圍.【詳解】設(shè)函數(shù),,因?yàn)?,所以,或,因?yàn)闀r(shí),,或時(shí),,,其圖象如下:當(dāng)時(shí),至多一個(gè)整數(shù)根;當(dāng)時(shí),在內(nèi)的解集中僅有三個(gè)整數(shù),只需,,所以.故選:C.【點(diǎn)睛】本題考查不等式的解法和應(yīng)用問題,還涉及利用導(dǎo)數(shù)求函數(shù)單調(diào)性和函數(shù)圖象,同時(shí)考查數(shù)形結(jié)合思想和解題能力.8、C【解析】
首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.9、D【解析】
設(shè)等比數(shù)列的公比為q,,運(yùn)用等比數(shù)列的性質(zhì)和通項(xiàng)公式,以及等差數(shù)列的中項(xiàng)性質(zhì),解方程可得公比q.【詳解】由題意,正項(xiàng)等比數(shù)列中,,可得,即,與的等差中項(xiàng)為4,即,設(shè)公比為q,則,則負(fù)的舍去,故選D.【點(diǎn)睛】本題主要考查了等差數(shù)列的中項(xiàng)性質(zhì)和等比數(shù)列的通項(xiàng)公式的應(yīng)用,其中解答中熟記等比數(shù)列通項(xiàng)公式,合理利用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了方程思想和運(yùn)算能力,屬于基礎(chǔ)題.10、B【解析】
利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對(duì)數(shù)運(yùn)算性質(zhì)比較a,c進(jìn)而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線對(duì)稱,則,即,又,所以,.故選:B.【點(diǎn)睛】本題主要考查對(duì)數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.11、A【解析】
根據(jù)符號(hào)函數(shù)的解析式,結(jié)合f(x)的單調(diào)性分析即可得解.【詳解】根據(jù)題意,g(x)=f(x)﹣f(ax),而f(x)是R上的減函數(shù),當(dāng)x>0時(shí),x<ax,則有f(x)>f(ax),則g(x)=f(x)﹣f(ax)>0,此時(shí)sgn[g(x)]=1,當(dāng)x=0時(shí),x=ax,則有f(x)=f(ax),則g(x)=f(x)﹣f(ax)=0,此時(shí)sgn[g(x)]=0,當(dāng)x<0時(shí),x>ax,則有f(x)<f(ax),則g(x)=f(x)﹣f(ax)<0,此時(shí)sgn[g(x)]=﹣1,綜合有:sgn[g(x)]=sgn(x);故選:A.【點(diǎn)睛】此題考查函數(shù)新定義問題,涉及函數(shù)單調(diào)性辨析,關(guān)鍵在于讀懂定義,根據(jù)自變量的取值范圍分類討論.12、D【解析】
直接利用二倍角余弦公式與弦化切即可得到結(jié)果.【詳解】∵,∴,故選D【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變變換,同角三角函數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出準(zhǔn)線,過(guò)作準(zhǔn)線的垂線,利用拋物線的定義把拋物線點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為點(diǎn)到準(zhǔn)線的距離,利用平面幾何知識(shí)計(jì)算出直線的斜率.【詳解】設(shè)是準(zhǔn)線,過(guò)作于,過(guò)作于,過(guò)作于,如圖,則,,∵,∴,∴,∴,,∴,∴直線斜率為.故答案為:.【點(diǎn)睛】本題考查拋物線的焦點(diǎn)弦問題,解題關(guān)鍵是利用拋物線的定義,把拋物線上點(diǎn)到焦點(diǎn)距離轉(zhuǎn)化為該點(diǎn)到準(zhǔn)線的距離,用平面幾何方法求解.14、【解析】
由三角函數(shù)圖象相位變換后表達(dá)函數(shù)解析式,再利用三角恒等變換與輔助角公式整理的表達(dá)式,進(jìn)而由三角函數(shù)值域求得最大值.【詳解】將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則所以,當(dāng)函數(shù)最大,最大值為故答案為:【點(diǎn)睛】本題考查表示三角函數(shù)圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡(jiǎn)函數(shù)式并求最值,屬于簡(jiǎn)單題.15、【解析】
根據(jù)題意,依次分析不等式的變化規(guī)律,綜合可得答案.【詳解】解:根據(jù)題意,對(duì)于第一個(gè)不等式,,則有,對(duì)于第二個(gè)不等式,,則有,對(duì)于第三個(gè)不等式,,則有,依此類推:第個(gè)不等式為:,故答案為.【點(diǎn)睛】本題考查歸納推理的應(yīng)用,分析不等式的變化規(guī)律.16、【解析】
根據(jù)復(fù)合函數(shù)單調(diào)性同增異減,結(jié)合二次函數(shù)的性質(zhì)、對(duì)數(shù)型函數(shù)的定義域列不等式組,解不等式求得的取值范圍.【詳解】由二次函數(shù)的性質(zhì)和復(fù)合函數(shù)的單調(diào)性可得解得.故答案為:【點(diǎn)睛】本小題主要考查根據(jù)對(duì)數(shù)型復(fù)合函數(shù)的單調(diào)性求參數(shù)的取值范圍,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】
(1)將代入函數(shù)的解析式,將函數(shù)的及解析式變形為分段函數(shù),利用二次函數(shù)的基本性質(zhì)可求得函數(shù)的值域;(2)由參變量分離法得出在區(qū)間內(nèi)有解,分和討論,求得函數(shù)的最大值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1)當(dāng)時(shí),.當(dāng)時(shí),;當(dāng)時(shí),.函數(shù)的值域?yàn)?;?)不等式等價(jià)于,即在區(qū)間內(nèi)有解當(dāng)時(shí),,此時(shí),,則;當(dāng)時(shí),,函數(shù)在區(qū)間上單調(diào)遞增,當(dāng)時(shí),,則.綜上,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查含絕對(duì)值函數(shù)的值域與含絕對(duì)值不等式有解的問題,利用絕對(duì)值的應(yīng)用將函數(shù)轉(zhuǎn)化為二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵,考查分類討論思想的應(yīng)用,屬于中等題.18、(1)(2)證明見解析【解析】
(1)由已知可得,構(gòu)造等比數(shù)列即可求出通項(xiàng)公式;(2)當(dāng)時(shí),由,可求,時(shí),由,可證,驗(yàn)證時(shí),不等式也成立,即可得證.【詳解】(1)由可得,,即,所以,解得,(2)當(dāng)時(shí),,,當(dāng)時(shí),,綜上,由可得遞增,,時(shí);所以,綜上:故.【點(diǎn)睛】本題主要考查了遞推數(shù)列求通項(xiàng)公式,利用放縮法證明不等式,涉及等比數(shù)列的求和公式,屬于難題.19、(1)證明見解析(2)【解析】
(1)由已知線面垂直得,結(jié)合菱形對(duì)角線垂直,可證得線面垂直;(2)由已知知兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標(biāo)系如圖所示,由已知線面垂直知與平面所成角為,這樣可計(jì)算出的長(zhǎng),寫出各點(diǎn)坐標(biāo),求出平面的法向量,由法向量夾角可得二面角.【詳解】證明:(1)因?yàn)槠矫?,平面,所?因?yàn)樗倪呅问橇庑?,所?又因?yàn)?,平面,平面,所以平?解:(2)據(jù)題設(shè)知,兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標(biāo)系如圖所示,因?yàn)榕c平面所成角為,即,所以又,所以,所以所以設(shè)平面的一個(gè)法向量,則令,則.因?yàn)槠矫?,所以為平面的一個(gè)法向量,且所以,.所以二面角的正弦值為.【點(diǎn)睛】本題考查線面垂直的判定定理和性質(zhì)定理,考查用向量法求二面角.立體幾何中求空間角常常是建立空間直角坐標(biāo)系,用空間向量法求空間角,這樣可減少思維量,把問題轉(zhuǎn)化為計(jì)算.20、(1);(2)4【解析】
(1)根據(jù)已知用二倍角余弦求出,進(jìn)而求出,利用正弦定理,即可求解;(2)由邊角,利用余弦定理結(jié)合基本不等式,求出的最大值,即可求出結(jié)論.【詳解】(1)∵,∴,由正弦定理得.(2)由(1)知,,所以,,,當(dāng)且僅當(dāng)時(shí),的面積有最大值4.【點(diǎn)睛】本題考查正弦定理、余弦定理、三角恒等變換解三角形,應(yīng)用基本不等式求最值,屬于基礎(chǔ)題.21、(1),(2)證明見解析【解析】
(1)利用首項(xiàng)和公差構(gòu)成方程組,從而求解出的通項(xiàng)公式;由的通項(xiàng)公式求解出的表達(dá)式,根據(jù)以及,求解出的通項(xiàng)公式;(2)利用錯(cuò)位相減法求解出的前項(xiàng)和,根據(jù)不等關(guān)系證明即可.【詳解】(1)設(shè)首項(xiàng)為,公差為.由題意,得,解得,∴,∴,∴當(dāng)時(shí),∴,.當(dāng)時(shí),滿足上式.∴(2),令數(shù)列的前項(xiàng)和為.兩式相減得∴恒成立,得證.【點(diǎn)睛】本題考查等差數(shù)列、等比數(shù)列的綜合應(yīng)用,難度一般.(1)當(dāng)用求解的通項(xiàng)公式時(shí),一定要注意驗(yàn)證是否成立;(2)當(dāng)一個(gè)數(shù)列符合等差乘以等比的形式,優(yōu)先考慮采用錯(cuò)位相減法進(jìn)行求和,同時(shí)注意對(duì)于錯(cuò)位的理解.22、(1);(2);(3)【解析】
(1)依題意,得,,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電動(dòng)轉(zhuǎn)速測(cè)量課程設(shè)計(jì)
- 二零二五年度一致行動(dòng)人新能源項(xiàng)目開發(fā)合作協(xié)議3篇
- 波浪發(fā)型課程設(shè)計(jì)中班
- 二零二五年度ktv音響設(shè)備租賃及維護(hù)服務(wù)合同3篇
- 糧食經(jīng)濟(jì)與文化課程設(shè)計(jì)
- 二零二五年度LED廣告租賃與品牌形象塑造協(xié)議3篇
- 2025年度智能化企業(yè)員工勞動(dòng)權(quán)益保障合同范本2篇
- 二零二五年剪輯師與游戲公司合作合同2篇
- 物理原子學(xué)課程設(shè)計(jì)
- 《手機(jī)玻璃蓋板瑕疵自動(dòng)檢測(cè)方法的研究》
- 大學(xué)試卷(示范)
- 高職院校智能制造實(shí)驗(yàn)室實(shí)訓(xùn)中心建設(shè)方案
- 房產(chǎn)交易管理平臺(tái)行業(yè)發(fā)展預(yù)測(cè)分析
- 檔案工作人員分工及崗位責(zé)任制(4篇)
- GB 4396-2024二氧化碳滅火劑
- 美麗的秋天景色作文500字小學(xué)
- 施工單位2025年度安全生產(chǎn)工作總結(jié)及計(jì)劃
- 護(hù)理質(zhì)量委員會(huì)會(huì)議
- 2024年護(hù)理質(zhì)量分析
- 2024-2025學(xué)年高中物理舉一反三專題2.1 簡(jiǎn)諧運(yùn)動(dòng)【八大題型】(含答案)
- EPC模式承包人建議書及承包人實(shí)施方案
評(píng)論
0/150
提交評(píng)論