




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年北京市匯文中學高三下學期開學考試數學試題理試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.南宋數學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數列與一般等差數列不同,前后兩項之差并不相等,但是逐項差數之差或者高次差成等差數列對這類高階等差數列的研究,在楊輝之后一般稱為“垛積術”.現(xiàn)有高階等差數列,其前7項分別為1,4,8,14,23,36,54,則該數列的第19項為()(注:)A.1624 B.1024 C.1198 D.15602.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.3.如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.84.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.1285.若復數是純虛數,則()A.3 B.5 C. D.6.已知一個三棱錐的三視圖如圖所示,其中三視圖的長、寬、高分別為,,,且,則此三棱錐外接球表面積的最小值為()A. B. C. D.7.已知函數(),若函數有三個零點,則的取值范圍是()A. B.C. D.8.設復數滿足,在復平面內對應的點的坐標為則()A. B.C. D.9.已知實數滿足,則的最小值為()A. B. C. D.10.根據最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關系數為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關11.已知實數,則的大小關系是()A. B. C. D.12.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準線的拋物線經過,設球的半徑分別為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某中學高一年級有學生1200人,高二年級有學生900人,高三年級有學生1500人,現(xiàn)按年級用分層抽樣的方法從這三個年級的學生中抽取一個容量為720的樣本進行某項研究,則應從高三年級學生中抽取_____人.14.已知函數.若在區(qū)間上恒成立.則實數的取值范圍是__________.15.如圖所示,在直角梯形中,,、分別是、上的點,,且(如圖①).將四邊形沿折起,連接、、(如圖②).在折起的過程中,則下列表述:①平面;②四點、、、可能共面;③若,則平面平面;④平面與平面可能垂直.其中正確的是__________.16.某中學舉行了一次消防知識競賽,將參賽學生的成績進行整理后分為5組,繪制如圖所示的頻率分布直方圖,記圖中從左到右依次為第一、第二、第三、第四、第五組,已知第二組的頻數是80,則成績在區(qū)間的學生人數是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左焦點為F,上頂點為A,直線AF與直線垂直,垂足為B,且點A是線段BF的中點.(I)求橢圓C的方程;(II)若M,N分別為橢圓C的左,右頂點,P是橢圓C上位于第一象限的一點,直線MP與直線交于點Q,且,求點P的坐標.18.(12分)十八大以來,黨中央提出要在2020年實現(xiàn)全面脫貧,為了實現(xiàn)這一目標,國家對“新農合”(新型農村合作醫(yī)療)推出了新政,各級財政提高了對“新農合”的補助標準.提高了各項報銷的比例,其中門診報銷比例如下:表1:新農合門診報銷比例醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院門診報銷比例60%40%30%20%根據以往的數據統(tǒng)計,李村一個結算年度門診就診人次情況如下:表2:李村一個結算年度門診就診情況統(tǒng)計表醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院一個結算年度內各門診就診人次占李村總就診人次的比例70%10%15%5%如果一個結算年度每人次到村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院門診平均費用分別為50元、100元、200元、500元.若李村一個結算年度內去門診就診人次為2000人次.(Ⅰ)李村在這個結算年度內去三甲醫(yī)院門診就診的人次中,60歲以上的人次占了80%,從去三甲醫(yī)院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的概率是多少?(Ⅱ)如果將李村這個結算年度內門診就診人次占全村總就診人次的比例視為概率,求李村這個結算年度每人次用于門診實付費用(報銷后個人應承擔部分)的分布列與期望.19.(12分)設函數,.(1)解不等式;(2)若對任意的實數恒成立,求的取值范圍.20.(12分)橢圓:()的離心率為,它的四個頂點構成的四邊形面積為.(1)求橢圓的方程;(2)設是直線上任意一點,過點作圓的兩條切線,切點分別為,,求證:直線恒過一個定點.21.(12分)已知多面體中,、均垂直于平面,,,,是的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.22.(10分)在中,角A,B,C的對邊分別為a,b,c,且.(1)求B;(2)若的面積為,周長為8,求b.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據高階等差數列的定義,求得等差數列的通項公式和前項和,利用累加法求得數列的通項公式,進而求得.【詳解】依題意:1,4,8,14,23,36,54,……兩兩作差得:3,4,6,9,13,18,……兩兩作差得:1,2,3,4,5,……設該數列為,令,設的前項和為,又令,設的前項和為.易,,進而得,所以,則,所以,所以.故選:B【點睛】本小題主要考查新定義數列的理解和運用,考查累加法求數列的通項公式,考查化歸與轉化的數學思想方法,屬于中檔題.2.A【解析】
由題意求得c與的值,結合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點睛】本題考查雙曲線的簡單性質,屬于基礎題.3.A【解析】
由三視圖還原出原幾何體,得出幾何體的結構特征,然后計算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關鍵.4.C【解析】
根據給定的程序框圖,逐次計算,結合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點睛】本題主要考查了循環(huán)結構的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,結合判斷條件求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.5.C【解析】
先由已知,求出,進一步可得,再利用復數模的運算即可【詳解】由z是純虛數,得且,所以,.因此,.故選:C.【點睛】本題考查復數的除法、復數模的運算,考查學生的運算能力,是一道基礎題.6.B【解析】
根據三視圖得到幾何體為一三棱錐,并以該三棱錐構造長方體,于是得到三棱錐的外接球即為長方體的外接球,進而得到外接球的半徑,求得外接球的面積后可求出最小值.【詳解】由已知條件及三視圖得,此三棱錐的四個頂點位于長方體的四個頂點,即為三棱錐,且長方體的長、寬、高分別為,∴此三棱錐的外接球即為長方體的外接球,且球半徑為,∴三棱錐外接球表面積為,∴當且僅當,時,三棱錐外接球的表面積取得最小值為.故選B.【點睛】(1)解決關于外接球的問題的關鍵是抓住外接的特點,即球心到多面體的頂點的距離都等于球的半徑,同時要作一圓面起襯托作用.(2)長方體的外接球的直徑即為長方體的體對角線,對于一些比較特殊的三棱錐,在研究其外接球的問題時可考慮通過構造長方體,通過長方體的外球球來研究三棱錐的外接球的問題.7.A【解析】
分段求解函數零點,數形結合,分類討論即可求得結果.【詳解】作出和,的圖像如下所示:函數有三個零點,等價于與有三個交點,又因為,且由圖可知,當時與有兩個交點,故只需當時,與有一個交點即可.若當時,時,顯然??=??(??)與??=4|??|有一個交點??,故滿足題意;時,顯然??=??(??)與??=4|??|沒有交點,故不滿足題意;時,顯然??=??(??)與??=4|??|也沒有交點,故不滿足題意;時,顯然與有一個交點,故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點睛】本題考查由函數零點的個數求參數范圍,屬中檔題.8.B【解析】
根據共軛復數定義及復數模的求法,代入化簡即可求解.【詳解】在復平面內對應的點的坐標為,則,,∵,代入可得,解得.故選:B.【點睛】本題考查復數對應點坐標的幾何意義,復數模的求法及共軛復數的概念,屬于基礎題.9.A【解析】
所求的分母特征,利用變形構造,再等價變形,利用基本不等式求最值.【詳解】解:因為滿足,則,當且僅當時取等號,故選:.【點睛】本題考查通過拼湊法利用基本不等式求最值.拼湊法的實質在于代數式的靈活變形,拼系數、湊常數是關鍵.(1)拼湊的技巧,以整式為基礎,注意利用系數的變化以及等式中常數的調整,做到等價變形;(2)代數式的變形以拼湊出和或積的定值為目標(3)拆項、添項應注意檢驗利用基本不等式的前提.10.D【解析】
對每一個選項逐一分析判斷得解.【詳解】回歸直線必過樣本數據中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關系數為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關系數r與符號相同,若回歸直線的斜率,則,樣本點分布應從左到右是上升的,則變量x與y正相關,故D正確.故選D.【點睛】本題主要考查線性回歸方程的性質,意在考查學生對該知識的理解掌握水平和分析推理能力.11.B【解析】
根據,利用指數函數對數函數的單調性即可得出.【詳解】解:∵,∴,,.∴.故選:B.【點睛】本題考查了指數函數對數函數的單調性,考查了推理能力與計算能力,屬于基礎題.12.D【解析】
由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內切于正方體,設,兩球球心和公切點都在體對角線上,通過幾何關系可轉化出,進而求解【詳解】根據拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內切于正方體,不妨設,兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D【點睛】本題考查立體圖與平面圖的轉化,拋物線幾何性質的使用,內切球的性質,數形結合思想,轉化思想,直觀想象與數學運算的核心素養(yǎng)二、填空題:本題共4小題,每小題5分,共20分。13.1.【解析】
先求得高三學生占的比例,再利用分層抽樣的定義和方法,即可求解.【詳解】由題意,高三學生占的比例為,所以應從高三年級學生中抽取的人數為.【點睛】本題主要考查了分層抽樣的定義和方法,其中解答中熟記分層抽樣的定義和抽取的方法是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.14.【解析】
首先解不等式,再由在區(qū)間上恒成立,即得到不等組,解得即可.【詳解】解:且,即解得,即因為在區(qū)間上恒成立,解得即故答案為:【點睛】本題考查一元二次不等式及函數的綜合問題,屬于基礎題.15.①③【解析】
連接、交于點,取的中點,證明四邊形為平行四邊形,可判斷命題①的正誤;利用線面平行的性質定理和空間平行線的傳遞性可判斷命題②的正誤;連接,證明出,結合線面垂直和面面垂直的判定定理可判斷命題③的正誤;假設平面與平面垂直,利用面面垂直的性質定理可判斷命題④的正誤.綜合可得出結論.【詳解】對于命題①,連接、交于點,取的中點、,連接、,如下圖所示:則且,四邊形是矩形,且,為的中點,為的中點,且,且,四邊形為平行四邊形,,即,平面,平面,平面,命題①正確;對于命題②,,平面,平面,平面,若四點、、、共面,則這四點可確定平面,則,平面平面,由線面平行的性質定理可得,則,但四邊形為梯形且、為兩腰,與相交,矛盾.所以,命題②錯誤;對于命題③,連接、,設,則,在中,,,則為等腰直角三角形,且,,,且,由余弦定理得,,,又,,平面,平面,,,、為平面內的兩條相交直線,所以,平面,平面,平面平面,命題③正確;對于命題④,假設平面與平面垂直,過點在平面內作,平面平面,平面平面,,平面,平面,平面,,,,,,,又,平面,平面,.,平面,平面,.,,顯然與不垂直,命題④錯誤.故答案為:①③.【點睛】本題考查立體幾何綜合問題,涉及線面平行、面面垂直的證明、以及點共面的判斷,考查推理能力,屬于中等題.16.30【解析】
根據頻率直方圖中數據先計算樣本容量,再計算成績在80~100分的頻率,繼而得解.【詳解】根據直方圖知第二組的頻率是,則樣本容量是,又成績在80~100分的頻率是,則成績在區(qū)間的學生人數是.故答案為:30【點睛】本題考查了頻率分布直方圖的應用,考查了學生綜合分析,數據處理,數形運算的能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(I).(II)【解析】
(I)寫出坐標,利用直線與直線垂直,得到.求出點的坐標代入,可得到的一個關系式,由此求得和的值,進而求得橢圓方程.(II)設出點的坐標,由此寫出直線的方程,從而求得點的坐標,代入,化簡可求得點的坐標.【詳解】(I)∵橢圓的左焦點,上頂點,直線AF與直線垂直∴直線AF的斜率,即①又點A是線段BF的中點∴點的坐標為又點在直線上∴②∴由①②得:∴∴橢圓的方程為.(II)設由(I)易得頂點M、N的坐標為∴直線MP的方程是:由得:又點P在橢圓上,故∴∴∴或(舍)∴∴點P的坐標為【點睛】本小題主要考查直線和圓錐曲線的位置關系,考查兩直線垂直的條件,考查向量數量積的運算.屬于中檔題.在解題過程中,首先閱讀清楚題意,題目所敘述的坐標、所敘述的直線是怎么得到的,向量的數量積對應的坐標都有哪一些,應該怎么得到,這些在讀題的時候需要分析清楚.18.(Ⅰ);(Ⅱ)的發(fā)分布列為:X2060140400P0.70.10.150.05期望.【解析】
(Ⅰ)由表2可得去各個門診的人次比例可得2000人中各個門診的人數,即可知道去三甲醫(yī)院的總人數,又有60歲所占的百分比可得60歲以上的人數,進而求出任選2人60歲以上的概率;(Ⅱ)由去各門診結算的平均費用及表1所報的百分比可得隨機變量的可能取值,再由概率可得的分布列,進而求出概率.【詳解】解:(Ⅰ)由表2可得李村一個結算年度內去門診就診人次為2000人次,分別去村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院人數為,,,,而三甲醫(yī)院門診就診的人次中,60歲以上的人次占了,所以去三甲醫(yī)院門診就診的人次中,60歲以上的人數為:人,設從去三甲醫(yī)院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的事件記為,則;(Ⅱ)由題意可得隨機變量的可能取值為:,,,,,,,,所以的發(fā)分布列為:X2060140400P0.70.10.150.05所以可得期望.【點睛】本題主要考查互斥事件、隨機事件的概率計算公式、分布列及其數學期望、組合計算公式,考查了推理能力與計算能力,屬于中檔題.19.(1);(2)【解析】試題分析:(1)將絕對值不等式兩邊平方,化為二次不等式求解.(2)將問題化為分段函數問題,通過分類討論并根據恒成立問
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年四川省廣元市英語八下期末檢測模擬試題含答案
- 王者榮耀語文試題及答案
- 外科選擇試題及答案
- 圖書館筆試題目及答案
- 統(tǒng)籌方法的試題及答案
- 2025年商業(yè)擔保貸款協(xié)議參考格式
- 2025年基金持有者權益與責任協(xié)議
- 2025年數據軟件協(xié)議手冊
- 2025年房產租賃權策劃變更協(xié)議書
- 2025年倉儲管理策劃與物流合作協(xié)議
- 全過程工程咨詢投標方案(技術方案)
- 初中物理神奇的電磁波+物理教科版九年級下冊
- GB/T 718-2024鑄造用生鐵
- 2024-2029年中國無溶劑復合機行業(yè)市場現(xiàn)狀分析及競爭格局與投資發(fā)展研究報告
- 汽車維修項目實施方案
- 競技體育人才隊伍建設方案
- 《多聯(lián)機空調系統(tǒng)工程技術規(guī)程》JGJ174-2024
- MOOC 微積分(二)-浙江大學 中國大學慕課答案
- 跨學科學習:一種基于學科的設計、實施與評價
- MOOC 動物營養(yǎng)學-西北農林科技大學 中國大學慕課答案
- 2020年江西省上饒市萬年縣中小學、幼兒園教師進城考試真題庫及答案
評論
0/150
提交評論