版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吉林省汪清縣四中2025屆數(shù)學(xué)高二上期末經(jīng)典試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若傾斜角為的直線過(guò)兩點(diǎn),則實(shí)數(shù)()A. B.C. D.2.已知m是2與8的等比中項(xiàng),則圓錐曲線x2﹣=1的離心率是()A.或 B.C. D.或3.過(guò)點(diǎn)且與直線垂直的直線方程是()A. B.C. D.4.拋物線的焦點(diǎn)到直線的距離()A. B.C.1 D.25.已知為虛數(shù)單位,復(fù)數(shù)滿足為純虛數(shù),則的虛部為()A. B.C. D.6.已知“”的必要不充分條件是“或”,則實(shí)數(shù)的最小值為()A. B.C. D.7.設(shè)變量滿足約束條件:,則的最小值()A. B.C. D.8.在的展開(kāi)式中,只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,且所有項(xiàng)的系數(shù)和為0,則含的項(xiàng)的系數(shù)為()A.-20 B.-15C.-6 D.159.已知直線與圓相離,則以,,為邊長(zhǎng)的三角形為()A.鈍角三角形 B.直角三角形C.銳角三角形 D.不存在10.設(shè)雙曲線:的左、右焦點(diǎn)分別為、,P為C上一點(diǎn),且,,則雙曲線的漸近線方程為()A. B.C. D.11.已知空間向量,,則()A. B.19C.17 D.12.七巧板是中國(guó)古代勞動(dòng)人民發(fā)明的一種傳統(tǒng)智力玩具,它由五塊等腰直角三角形、一塊正方形和一塊平行四邊形共七塊板組成如圖是一個(gè)用七巧板拼成的正方形,若在此正方形中任取一點(diǎn),則此點(diǎn)取自陰影部分的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.展開(kāi)式中的系數(shù)是___________.14.由曲線圍成的圖形的面積為_(kāi)______________15.在空間直角坐標(biāo)系中,已知,,,,則___________.16.已知曲線表示焦點(diǎn)在軸上的雙曲線,則符合條件的的一個(gè)整數(shù)值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某中醫(yī)藥研究所研制出一種新型抗過(guò)敏藥物,服用后需要檢驗(yàn)血液抗體是否為陽(yáng)性,現(xiàn)有n(n∈N*)份血液樣本,每個(gè)樣本取到的可能性均等,有以下兩種檢驗(yàn)方式:①逐份檢驗(yàn),需要檢驗(yàn)n次;②混合檢驗(yàn),將其中k(k∈N*,2≤k≤n)份血液樣本分別取樣混合在一起檢驗(yàn),若結(jié)果為陰性,則這k份的血液全為陰性,因而這k份血液樣本只需檢驗(yàn)一次就夠了,若檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這k份血液究竟哪份為陽(yáng)性,就需要對(duì)這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為k+1次.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是相互獨(dú)立的,且每份樣本是陽(yáng)性的概率為p(0<p<1).(1)假設(shè)有5份血液樣本,其中只有兩份樣本為陽(yáng)性,若采取逐份檢驗(yàn)的方式,求恰好經(jīng)過(guò)3次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)的概率.(2)現(xiàn)取其中的k(k∈N*,2≤k≤n)份血液樣本,采用逐份檢驗(yàn)的方式,樣本需要檢驗(yàn)的次數(shù)記為ξ1;采用混合檢驗(yàn)的方式,樣本需要檢驗(yàn)的總次數(shù)記為ξ2.(i)若k=4,且,試運(yùn)用概率與統(tǒng)計(jì)的知識(shí),求p的值;(ii)若,證明:.18.(12分)某種機(jī)械設(shè)備隨著使用年限的增加,它的使用功能逐漸減退,使用價(jià)值逐年減少,通常把它使用價(jià)值逐年減少的“量”換算成費(fèi)用,稱之為“失效費(fèi)”.某種機(jī)械設(shè)備的使用年限(單位:年)與失效費(fèi)(單位:萬(wàn)元)的統(tǒng)計(jì)數(shù)據(jù)如下表所示:使用年限(單位:年)1234567失效費(fèi)(單位:萬(wàn)元)2.903.303.604.404.805.205.90(1)由上表數(shù)據(jù)可知,可用線性回歸模型擬合與的關(guān)系.請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;(精確到0.01)(2)求出關(guān)于的線性回歸方程,并估算該種機(jī)械設(shè)備使用8年的失效費(fèi)參考公式:相關(guān)系數(shù)線性回歸方程中斜率和截距最小二乘估計(jì)計(jì)算公式:,參考數(shù)據(jù):,,19.(12分)已知滿足,.(1)求證:是等差數(shù)列,求的通項(xiàng)公式;(2)若,的前項(xiàng)和是,求證:.20.(12分)如圖,在四棱錐中,底面為的中點(diǎn)(1)求證:平面;(2)若,求平面與平面的夾角大小21.(12分)已知單調(diào)遞增的等比數(shù)列滿足:,且是,的等差中項(xiàng)(1)求數(shù)列的通項(xiàng)公式;(2)若,,求22.(10分)已知焦點(diǎn)為F的拋物線上一點(diǎn)到F的距離是4(1)求拋物線C的方程(2)若不過(guò)原點(diǎn)O的直線l與拋物線C交于A,B兩點(diǎn)(A,B位于x軸兩側(cè)),C的準(zhǔn)線與x軸交于點(diǎn)E,直線與分別交于點(diǎn)M,N,若,證明:直線l過(guò)定點(diǎn)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】解方程即得解.【詳解】解:由題得.故選:A2、A【解析】利用等比數(shù)列求出m,然后求解圓錐曲線的離心率即可【詳解】解:m是2與8的等比中項(xiàng),可得m=±4,當(dāng)m=4時(shí),圓錐曲線為雙曲線x2﹣=1,它的離心率為:,當(dāng)m=-4時(shí),圓錐曲線x2﹣=1為橢圓,離心率:,故選:A3、C【解析】根據(jù)兩直線垂直時(shí)斜率乘積為,可以直接求出所求直線的斜率,再根據(jù)點(diǎn)斜式求出直線方程,最后化成一般式方程即可.【詳解】因?yàn)橹本€的斜率為,故所求直線的斜率等于,所求直線的方程為,即,故選:C4、B【解析】由拋物線可得焦點(diǎn)坐標(biāo),結(jié)合點(diǎn)到直線的距離公式,即可求解.【詳解】由拋物線可得焦點(diǎn)坐標(biāo)為,根據(jù)點(diǎn)到直線的距離公式,可得,即拋物線的焦點(diǎn)到直線的距離為.故選:B.5、D【解析】先設(shè),代入化簡(jiǎn),由純虛數(shù)定義求出,即可求解.【詳解】設(shè),所以,因?yàn)闉榧兲摂?shù),所以,解得,所以的虛部為:.故選:D.6、A【解析】首先解不等式得到或,根據(jù)題意得到,再解不等式組即可.【詳解】,解得或,因?yàn)椤啊钡谋匾怀浞謼l件是“或”,所以.實(shí)數(shù)的最小值為.故選:A7、D【解析】如圖作出可行域,知可行域的頂點(diǎn)是A(-2,2)、B()及C(-2,-2),平移,當(dāng)經(jīng)過(guò)A時(shí),的最小值為-8,故選D.8、C【解析】先由只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,求出n=6;再由展開(kāi)式的所有項(xiàng)的系數(shù)和為0,用賦值法求出,用通項(xiàng)公式求出的項(xiàng)的系數(shù).【詳解】∵在的展開(kāi)式中,只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,∴在的展開(kāi)式有7項(xiàng),即n=6;而展開(kāi)式的所有項(xiàng)的系數(shù)和為0,令x=1,代入,即,所以.∴是展開(kāi)式的通項(xiàng)公式為:,要求含的項(xiàng),只需,解得,所以系數(shù)為.故選:C9、A【解析】應(yīng)用直線與圓的相離關(guān)系可得,再由余弦定理及三角形內(nèi)角的性質(zhì)即可判斷三角形的形狀.【詳解】由題設(shè),,即,又,所以,且,故以,,為邊長(zhǎng)的三角形為鈍角三角形.故選:A.10、B【解析】根據(jù)雙曲線定義結(jié)合,求得,在中,利用余弦定理求得之間的關(guān)系,即可得出答案.【詳解】解:因?yàn)樵陔p曲線中,因?yàn)?,所以,所以,在中,,,由余弦定理可得,即,所以,所以,所以,所以雙曲線的漸近線方程為.故選:B.11、D【解析】先求出的坐標(biāo),再求出其?!驹斀狻恳?yàn)椋?,故,故選:D.12、D【解析】設(shè)正方形的邊長(zhǎng)為,計(jì)算出陰影部分區(qū)域的面積和正方形區(qū)域的面積,然后利用幾何概型的概率公式計(jì)算出所求事件的概率.【詳解】設(shè)大正方形的邊長(zhǎng)為,則面積為,陰影部分由一個(gè)大等腰直角三角形和一個(gè)梯形組成大等腰直角三角形的面積為,梯形的上底為,下底為,高為,面積為,故所求概率故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)二項(xiàng)展開(kāi)式的通項(xiàng)公式,可知展開(kāi)式中含的項(xiàng),以及展開(kāi)式中含的項(xiàng),再根據(jù)組合數(shù)的運(yùn)算即可求出結(jié)果.【詳解】解:由題意可得,展開(kāi)式中含的項(xiàng)為,而展開(kāi)式中含的項(xiàng)為,所以的系數(shù)為.故答案為:.14、【解析】當(dāng)時(shí),曲線表示的圖形為以為圓心,以為半徑的圓在第一象限的部分,所以面積為,根據(jù)對(duì)稱性,可知由曲線圍成的圖形的面積為考點(diǎn):本小題主要考查曲線表示的平面圖形的面積的求法,考查學(xué)生分類討論思想的運(yùn)用和運(yùn)算求解能力.點(diǎn)評(píng):解決此題的關(guān)鍵是看出所求圖形在四個(gè)象限內(nèi)是相同的,然后求出在一個(gè)象限內(nèi)的圖形的面積即可解決問(wèn)題.15、或##或【解析】根據(jù)向量平行時(shí)坐標(biāo)的關(guān)系和向量的模公式即可求解.【詳解】,且,設(shè),,解得,或.故答案為:或.16、.(答案不唯一)【解析】給出一個(gè)符合條件的值即可.【詳解】當(dāng)時(shí),曲線表示焦點(diǎn)在軸上的雙曲線,故答案為:.(答案不唯一)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)(i);(ii)證明見(jiàn)解析.【解析】(1)設(shè)恰好經(jīng)過(guò)3次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)為事件A,由古典概型概率計(jì)算公式可得答案;(2)(i)由已知,可能取值分別為1,,求解概率然后求期望推出關(guān)于的關(guān)系式;(ii)由,計(jì)算出,再由,構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷函數(shù)的最值可得答案..【詳解】(1)設(shè)恰好經(jīng)過(guò)3次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)為事件A,所以前2次檢驗(yàn)中有一陽(yáng)性有一陰性樣本第三次為陽(yáng)性樣本,或者前3次均為陰性樣本,則.(2)(i),所以,可能取值分別為1,,,,因?yàn)榈?,因?yàn)?,所以?(ii)因?yàn)?,由(i)知,所以,設(shè),,所以在單調(diào)遞增,所以由于,所以,即,得證.【(4)(5)選做】18、(1)答案見(jiàn)解析;(2);失效費(fèi)為6.3萬(wàn)元【解析】(1)根據(jù)相關(guān)系數(shù)公式計(jì)算出相關(guān)系數(shù)可得結(jié)果;(2)根據(jù)公式求出和可得關(guān)于的線性回歸方程,再代入可求出結(jié)果.【詳解】(1)由題意,知,,∴結(jié)合參考數(shù)據(jù)知:因?yàn)榕c的相關(guān)系數(shù)近似為0.99,所以與的線性相關(guān)程度相當(dāng)大,從而可以用線性回歸模型擬合與的關(guān)系(2)∵,∴∴關(guān)于的線性回歸方程為,將代入線性回歸方程得萬(wàn)元,∴估算該種機(jī)械設(shè)備使用8年的失效費(fèi)為6.3萬(wàn)元19、(1)證明見(jiàn)解析,(2)證明見(jiàn)解析【解析】(1)在等式兩邊同時(shí)除以,結(jié)合等差數(shù)列的定義可證得數(shù)列為等差數(shù)列,確定該數(shù)列的首項(xiàng)和公差,可求得的表達(dá)式;(2)求得,利用裂項(xiàng)相消法求得,即可證得原不等式成立.【小問(wèn)1詳解】解:在等式兩邊同時(shí)除以可得且,所以,數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,則,因此,.【小問(wèn)2詳解】證明:,所以,.故原不等式得證.20、(1)證明見(jiàn)解析(2)【解析】(1)取中點(diǎn),連結(jié),證得,利用線面平行的判定定理,即可求解;(2)以為原點(diǎn),以方面為軸,以方向?yàn)檩S,以方向?yàn)檩S,建立坐標(biāo)系,利用平面和平面的法向量的夾角公式,即可求解【小問(wèn)1詳解】取中點(diǎn),連結(jié),由,,則,又由平面,平面,所以平面.【小問(wèn)2詳解】以為原點(diǎn),以方面為軸,以方向?yàn)檩S,以方向?yàn)檩S,建立坐標(biāo)系,可得,,,,,則,,設(shè)平面的一個(gè)法向量為,則,即,令,則又平面的法向量為;則,所以平面與平面所成的銳二面角為.21、(1);(2)【解析】(1)將已知條件整理變形為等比數(shù)列的首項(xiàng)和公比來(lái)表示,解方程組得到基本量,可得到通項(xiàng)公式(2)化簡(jiǎn)通項(xiàng)得,根據(jù)特點(diǎn)求和時(shí)采用錯(cuò)位相減法求解試題解析:(1)設(shè)等比數(shù)列的首項(xiàng)為,公比為,依題意,有2()=+,代入,得=8,2分∴+=20∴解之得或4分又單調(diào)遞增,∴="2,"=2,∴=2n6分(2),∴①8分∴②∴①-②得=12分考點(diǎn):1.等比數(shù)列通項(xiàng)公式;2.錯(cuò)位相減求和22、(1);(2)證明過(guò)程見(jiàn)解析.【解析】(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度生態(tài)園區(qū)沉降監(jiān)測(cè)與可持續(xù)發(fā)展合同范本4篇
- 2025年度瓷磚品牌形象設(shè)計(jì)與廣告投放合同3篇
- 2024石料運(yùn)輸合同違約責(zé)任范本3篇
- 2025年度政府機(jī)構(gòu)公務(wù)出差協(xié)議書(shū)模板4篇
- 2025年度智慧家居SAAS解決方案銷售服務(wù)合同3篇
- 2024版?zhèn)€人之間借款合同書(shū)
- 2025年度幼兒園廚房設(shè)備租賃及運(yùn)營(yíng)管理合同4篇
- 2024門(mén)窗行業(yè)綠色認(rèn)證與環(huán)保評(píng)估合同3篇
- 2025年度智能設(shè)備品牌代理授權(quán)合同協(xié)議4篇
- 2025年度智能交通系統(tǒng)出資股東協(xié)議范本4篇
- 電子煙研發(fā)合作合同
- GB/T 15568-2024通用型片狀模塑料(SMC)
- 2024年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(附答案)
- 2024政務(wù)服務(wù)綜合窗口人員能力與服務(wù)規(guī)范考試試題
- 第十五屆全國(guó)石油和化工行業(yè)職業(yè)技能競(jìng)賽(化工總控工)考試題庫(kù)-下(判斷題)
- 滿意度測(cè)評(píng)管理制度
- 羊肉購(gòu)銷合同范本
- 2024五年級(jí)下冊(cè)語(yǔ)文組詞表
- 2024 smart社區(qū)運(yùn)營(yíng)全案服務(wù)項(xiàng)目
- JT∕T 1477-2023 系列2集裝箱 角件
- JT-T-566-2004軌道式集裝箱門(mén)式起重機(jī)安全規(guī)程
評(píng)論
0/150
提交評(píng)論