2025屆西藏林芝一中數(shù)學高二上期末綜合測試試題含解析_第1頁
2025屆西藏林芝一中數(shù)學高二上期末綜合測試試題含解析_第2頁
2025屆西藏林芝一中數(shù)學高二上期末綜合測試試題含解析_第3頁
2025屆西藏林芝一中數(shù)學高二上期末綜合測試試題含解析_第4頁
2025屆西藏林芝一中數(shù)學高二上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆西藏林芝一中數(shù)學高二上期末綜合測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線上一點的縱坐標為4,則點到拋物線焦點的距離為A.2 B.3C.4 D.52.“,”的否定是A., B.,C., D.,3.已知向量,則()A. B.C. D.4.已知三個觀測點,在的正北方向,相距,在的正東方向,相距.在某次爆炸點定位測試中,兩個觀測點同時聽到爆炸聲,觀測點晚聽到,已知聲速為,則爆炸點與觀測點的距離是()A. B.C. D.5.為了更好地研究雙曲線,某校高二年級的一位數(shù)學老師制作了一個如圖所示的雙曲線模型.已知該模型左、右兩側的兩段曲線(曲線與曲線)為某雙曲線(離心率為2)的一部分,曲線與曲線中間最窄處間的距離為,點與點,點與點均關于該雙曲線的對稱中心對稱,且,則()A. B.C. D.6.已知是橢圓與雙曲線的公共焦點,P是它們的一個公共點,且,線段的垂直平分線過,若橢圓的離心率為,雙曲線的離心率為,則的最小值為()A. B.3C.6 D.7.圓的圓心和半徑分別是()A., B.,C., D.,8.在某次海軍演習中,已知甲驅逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護衛(wèi)艦在甲驅逐艦的正西方向,若測得乙護衛(wèi)艦在航母的南偏西45°方向,則甲驅逐艦與乙護衛(wèi)艦的距離為()A.海里 B.海里C.海里 D.海里9.與圓和圓都外切的圓的圓心在()A.一個圓上 B.一個橢圓上C.雙曲線的一支上 D.一條拋物線上10.下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則11.已知過拋物線焦點的直線交拋物線于,兩點,則的最小值為()A. B.2C. D.312.平面上動點到點的距離與它到直線的距離之比為,則動點的軌跡是()A.雙曲線 B.拋物線C.橢圓 D.圓二、填空題:本題共4小題,每小題5分,共20分。13.設,是雙曲線的兩個焦點,P是雙曲線上任意一點,過作平分線的垂線,垂足為M,則點M到直線的距離的最小值是___14.定義在R上的函數(shù)滿足,其中為自然對數(shù)的底數(shù),,則滿足的a的取值范圍是__________.15.若函數(shù)的遞增區(qū)間是,則實數(shù)______.16.四棱錐中,底面是一個平行四邊形,,,,則四棱錐體積為_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在等差數(shù)列中,,前10項和(1)求列通項公式;(2)若數(shù)列是首項為1,公比為2的等比數(shù)列,求的前8項和18.(12分)銳角中滿足,其中分別為內角的對邊(I)求角;(II)若,求的取值范圍19.(12分)已知等差數(shù)列滿足,(1)求數(shù)列的通項公式及前10項和;(2)等比數(shù)列滿足,,求和:20.(12分)冬奧會的全稱是冬季奧林匹克運動會,是世界規(guī)模最大的冬季綜合性運動會,每四年舉辦一屆.第24屆冬奧會將于2022年在中國北京和張家口舉行.為了弘揚奧林匹克精神,增強學生的冬奧會知識,廣安市某中學校從全校隨機抽取50名學生參加冬奧會知識競賽,并根據這50名學生的競賽成績,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據分組區(qū)間(1)求頻率分布直方圖中a的值:(2)求這50名學生競賽成績的眾數(shù)和中位數(shù).(結果保留一位小數(shù))21.(12分)已知函數(shù),(1)求的單調區(qū)間;(2)當時,求證:在上恒成立22.(10分)已知拋物線C:上有一動點,,過點P作拋物線C的切線交y軸于點Q(1)判斷線段PQ的垂直平分線是否過定點?若過,求出定點坐標;若不過,請說明理由;(2)過點P作垂線交拋物線C于另一點M,若切線的斜率為k,設的面積為S,求的最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】拋物線焦點在軸上,開口向上,所以焦點坐標為,準線方程為,因為點A的縱坐標為4,所以點A到拋物線準線的距離為,因為拋物線上的點到焦點的距離等于到準線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應用拋物線定義和拋物線上點的性質拋物線上的點到焦點的距離,考查學生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準線的距離,這條性質在解題時經常用到,可以簡化運算.2、D【解析】通過命題的否定的形式進行判斷【詳解】因為全稱命題的否定是特稱命題,故“,”的否定是“,”.故選D.【點睛】本題考查全稱命題的否定,屬基礎題.3、B【解析】根據向量加減法運算的坐標表示即可得到結果【詳解】故選:B.4、D【解析】根據題意作出示意圖,然后結合余弦定理解三角形即可求出結果.【詳解】設爆炸點為,由于兩個觀測點同時聽到爆炸聲,則點位于的垂直平分線上,又在的正東方向且觀測點晚聽到,則點位于的左側,,,,設,則,解得,則爆炸點與觀測點的距離為,故選:D.5、D【解析】依題意以雙曲線的對稱中心為坐標原點建系,設雙曲線的方程為,根據已知求得,點縱坐標代入計算即可求得橫坐標得出結果.【詳解】以雙曲線的對稱中心為坐標原點,建立平面直角坐標系,因為雙曲線的離心率為2,所以可設雙曲線的方程為,依題意可得,則,即雙曲線的方程為.因為,所以的縱坐標為18.由,得,故.故選:D.6、C【解析】利用橢圓和雙曲線的性質,用橢圓雙曲線的焦距長軸長表示,再利用均值不等式得到答案【詳解】設橢圓長軸,雙曲線實軸,由題意可知:,又,,兩式相減,可得:,,.,,當且僅當時取等號,的最小值為6,故選:C【點睛】本題考查了橢圓雙曲線的性質,用橢圓雙曲線的焦距長軸長表示是解題的關鍵,意在考查學生的計算能力7、D【解析】先化為標準方程,再求圓心半徑即可.【詳解】先化為標準方程可得,故圓心為,半徑為.故選:D.8、A【解析】利用正弦定理可求解.【詳解】設甲驅逐艦、乙護衛(wèi)艦、航母所在位置分別為A,B,C,則,,.在△ABC中,由正弦定理得,即,解得,即甲驅逐艦與乙護衛(wèi)艦的距離為海里故選:A9、C【解析】設動圓的半徑為,然后根據動圓與兩圓都外切得,再兩式相減消去參數(shù),則滿足雙曲線的定義,即可求解.【詳解】設動圓的圓心為,半徑為,而圓的圓心為,半徑為1;圓的圓心為,半徑為2依題意得,則,所以點的軌跡是雙曲線的一支故選:C10、D【解析】通過舉反列即可得ABC錯誤,利用不等式性質可判斷D【詳解】A.當時,,但,故A錯;B.當時,,故B錯;C.當時,,但,故C錯;D.若,則,D正確故選:D11、D【解析】設出直線方程,聯(lián)立拋物線方程,得到韋達定理,求得,利用拋物線定義,將目標式轉化為關于的代數(shù)式,消元后,利用基本不等式即可求得結果.【詳解】因為拋物線的焦點的坐標為,顯然要滿足題意,直線的斜率存在,設直線的方程為聯(lián)立可得,其,設坐標為,顯然,則,,根據拋物線定義,MF=故=4+4令,故4+4當且僅當,即時取得最小值.故選:D.【點睛】本題考察拋物線中的最值問題,涉及到韋達定理的使用,基本不等式的使用;其中利用的關系,以及拋物線的定義轉化目標式,是解決問題的關鍵.12、A【解析】設點,利用距離公式化簡可得出點的軌跡方程,即可得出動點的軌跡圖形.【詳解】設點,由題意可得,化簡可得,即,曲線為反比例函數(shù)圖象,故動點的軌跡是雙曲線.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】構造全等三角形,結合雙曲線定義,求得點的軌跡方程,再根據直線與圓的位置關系,即可求得點到直線距離的最小值.【詳解】延長交的延長線于點,如下所示:因為平分,且,故△△,則,又,則,又在△中,分別為的中點,故可得;設點的坐標為,則,即點在圓心為,半徑的圓上,圓心到直線的距離,故點到直線距離的最小值為.故答案為:.【點睛】本題考查雙曲線的定義,以及直線與圓的位置關系,解決問題的關鍵在于通過幾何關系求得點的軌跡方程,屬中檔題.14、【解析】設,求出其導數(shù)結合條件得出在上單調遞減,將問題轉化為求解,由的單調性可得答案.【詳解】設,則由,則所以在上單調遞減.又由,即,即,所以故答案為:15、【解析】求得二次函數(shù)的單調增區(qū)間,即可求得參數(shù)的值.【詳解】因為二次函數(shù)開口向上,對稱軸為,故其單調增區(qū)間為,又由題可知:其遞增區(qū)間是,故.故答案為:.16、【解析】計算,,得到底面,計算,,計算體積得到答案.【詳解】由,,所以底面,,故,體積為.故答案為:16.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)347.【解析】(1)設等差數(shù)列的公差為,解方程組即得解;(2)先求出,再分組求和得解.【詳解】解:(1)設等差數(shù)列的公差為,則解得所以(2)由題意,,所以所以的前8項和為18、(I);(II)【解析】(I)由正弦定理邊角互化并整理得,進而由余弦定理得;(II)正弦定理得,故,再根據三角恒等變換得,由于銳角中,,進而根據三角函數(shù)性質求得答案.【詳解】解:(I)由正弦定理得所以,即,所以,因為銳角中,,所以;(II)因為,,所以所以,因為,所以,所以,所以,所以19、(1),175(2)【解析】(1)由已知結合等差數(shù)列的通項公式先求出公差,然后結合通項公式及求和公式即可求解;(2)結合等比數(shù)列的性質先求出,然后結合等比數(shù)列性質及求和公式可求【小問1詳解】解:等差數(shù)列滿足,,所以,,;【小問2詳解】解:因為等比數(shù)列滿足,,所以或(舍去),由等比數(shù)列的性質可知,是以1為首項,4為公比的等比數(shù)列,所以,所以20、(1)(2)眾數(shù);中位數(shù)【解析】(1)根據頻率分布直方圖矩形面積和為1列式即可;(2)根據眾數(shù)即最高矩形中間值,中位數(shù)左右兩邊矩形面積各為0.5列式即可.【小問1詳解】由,得【小問2詳解】50名學生競賽成績的眾數(shù)為設中位數(shù)為,則解得所以這50名學生競賽成績的中位數(shù)為76.421、(1)單調減區(qū)間為,單調增區(qū)間為;(2)證明見解析.【解析】(1)求得,根據其正負,即可判斷函數(shù)單調性從而求得函數(shù)單調區(qū)間;(2)根據題意,轉化目標不等式為,分別構造函數(shù),,利用導數(shù)研究其單調性,即可證明.【小問1詳解】因為,故可得,又為單調增函數(shù),令,解得,故當時,;當時,,故的單調減區(qū)間為,單調增區(qū)間為.【小問2詳解】當時,,要證,即證,又,則只需證,即證,令,,當時,,單調遞增,當時,,單調遞減,故當時,取得最大值;令,,又為單調增函數(shù),且時,,當時,,單調遞減,當時,,單調遞增,故當時,取得最小值.則,且當時,同時取得最小值和最大值,故,即,也即時恒成立.【點睛】本題考察利用導數(shù)求函數(shù)的單調區(qū)間,以及利用導數(shù)研究恒成立問題;處理本題的關鍵是合理轉化目標式,屬中檔題.22、(1)線段的垂直平分線過定點(2)【解析】(1)設切線的方程為,并與拋物線方程聯(lián)立,利用判別式求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論