版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
北京市東城區(qū)匯文中學2025屆高二數(shù)學第一學期期末監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知:,直線l:,M為直線l上的動點,過點M作的切線MA,MB,切點為A,B,則四邊形MACB面積的最小值為()A.1 B.2C. D.42.設為拋物線焦點,直線,點為上任意一點,過點作于,則()A.3 B.4C.2 D.不能確定3.已知等比數(shù)列的前n項和為,且滿足公比0<q<1,<0,則下列說法不正確的是()A.一定單調(diào)遞減 B.一定單調(diào)遞增C.式子-≥0恒成立 D.可能滿足=,且k≠14.設集合,,則()A. B.C. D.5.已知向量,,且與互相垂直,則()A. B.C. D.6.若函數(shù)在區(qū)間單調(diào)遞增,則的取值范圍是()A. B.C. D.7.三棱柱中,,,,若,則()A. B.C. D.8.設數(shù)列的前項和為,當時,,,成等差數(shù)列,若,且,則的最大值為()A. B.C. D.9.已知雙曲線C:(a>0,b>0),斜率為的直線與雙曲線交于不同的兩點,且線段的中點為P(2,4),則雙曲線的漸近線方程為()A. B.C. D.10.等比數(shù)列,,,成公差不為0的等差數(shù)列,,則數(shù)列的前10項和()A. B.C. D.11.函數(shù)y=x3+x2-x+1在區(qū)間[-2,1]上的最小值為()A. B.2C.-1 D.-412.以下命題是真命題的是()A.方差和標準差都是刻畫樣本數(shù)據(jù)分散程度的統(tǒng)計量B.若m為數(shù)據(jù)(i=1,2,3,····,2021)的中位數(shù),則C.回歸直線可能不經(jīng)過樣本點的中心D.若“”為假命題,則均為假命題二、填空題:本題共4小題,每小題5分,共20分。13.甲、乙兩隊進行籃球決賽,采取七場四勝制(當一隊贏得四場勝利時,該隊獲勝,決賽結(jié)束).根據(jù)前期比賽成績,甲隊的主客場安排依次為“主主客客主客主”.設甲隊主場取勝的概率為0.6,客場取勝的概率為0.5,且各場比賽結(jié)果相互獨立,則甲隊以4∶1獲勝的概率是____________14.已知拋物線C:的焦點為F,過M(4,0)的直線交C于A、B兩點,設,的面積分別為、,則的最小值為______15.阿波羅尼斯與阿基米德、歐幾里得被稱為亞歷山大時期的數(shù)學三巨匠.“阿波羅尼斯圓”是他的代表成果之一:平面上動點P到兩定點A,B的距離之比滿足(且,t為常數(shù)),則點的軌跡為圓.已知在平面直角坐標系中,,,動點P滿足,則P點的軌跡為圓,該圓方程為_________;過點的直線交圓于兩點,且,則_________16.已知雙曲線:,斜率為的直線與E的左右兩支分別交于A,B兩點,點P的坐標為,直線AP交E于另一點C,直線BP交E于另一點D.若直線CD的斜率為,則E的離心率為___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,平面,∥,,,為上一點,平面(Ⅰ)求證:∥平面;(Ⅱ)若,求點D到平面EMC的距離18.(12分)已知A(-3,0),B(3,0),四邊形AMBN的對角線交于點D(1,0),kMA與kMB的等比中項為,直線AM,NB相交于點P.(1)求點M的軌跡C的方程;(2)若點N也在C上,點P是否在定直線上?如果是,求出該直線,如果不是,請說明理由.19.(12分)已知圓與直線(1)若,直線與圓相交與,求弦長(2)若直線與圓無公共點求的取值范圍20.(12分)已知拋物線C的頂點在坐標原點,焦點在x軸上,點在拋物線C上(1)求拋物線C的方程;(2)過拋物線C焦點F的直線l交拋物線于P,Q兩點,若求直線l的方程21.(12分)已知拋物線C:,經(jīng)過的直線與拋物線C交于A,B兩點(1)求的值(其中為坐標原點);(2)設F為拋物線C的焦點,直線為拋物線C的準線,直線是拋物線C的通徑所在的直線,過C上一點P()()作直線與拋物線相切,若直線與直線相交于點M,與直線相交于點N,證明:點P在拋物線C上移動時,恒為定值,并求出此定值22.(10分)已知動點M到定點和的距離之和為4(1)求動點軌跡的方程;(2)若直線交橢圓于兩個不同的點A,B,O是坐標原點,求的面積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】易知四邊形MACB的面積為,然后由最小,根據(jù)與直線l:垂直求解.【詳解】:化為標準方程為:,由切線長得:,四邊形MACB的面積為,若四邊形MACB的面積最小,則最小,此時與直線l:垂直,所以,所以四邊形MACB面積的最小值,故選:B2、A【解析】由拋物線方程求出準線方程,由題意可得,由拋物線的定義可得,即可求解.【詳解】由可得,準線為,設,由拋物線的定義可得,因為過點作于,可得,所以,故選:A.3、D【解析】根據(jù)等比數(shù)列的通項公式,前n項和的意義,可逐項分析求解.【詳解】因為等比數(shù)列的前n項和為,且滿足公比0<q<1,<0,所以當時,由可得,故數(shù)列為增函數(shù),故B正確;由0<q<1,<0知,所以,故一定單調(diào)遞減,故A正確;因為當時,,,所以,即-,當時,,綜上,故C正確;若=,且k≠1,則,即,因為,故,故矛盾,所以D不正確.故選:D4、C【解析】根據(jù)集合交集和補集的概念及運算,即可求解.【詳解】由題意,集合,,根據(jù)補集的運算,可得,所以.故選:C.5、D【解析】根據(jù)垂直關系可得,由向量坐標運算可構(gòu)造方程求得結(jié)果.【詳解】,,又與互相垂直,,解得:.故選:D.6、A【解析】函數(shù)在區(qū)間上單調(diào)遞增,轉(zhuǎn)化為導函數(shù)在該區(qū)間上大于等于0恒成立,進而求出結(jié)果.【詳解】由題意得:在區(qū)間上恒成立,而,所以.故選:A7、A【解析】利用空間向量線性運算及基本定理結(jié)合圖形即可得出答案.【詳解】解:由,,,若,得.故選:A.8、A【解析】根據(jù)等差中項寫出式子,由遞推式及求和公式寫出和,進而得出結(jié)果.【詳解】解:由,,成等差數(shù)列,可得,則,,,可得數(shù)列中,每隔兩項求和是首項為,公差為的等差數(shù)列.則,,則的最大值可能為.由,,可得.因為,,,即,所以,則,當且僅當時,,符合題意,故的最大值為.故選:A.【點睛】本題考查等差數(shù)列的性質(zhì)和遞推式的應用,考查分析問題能力,屬于難題.9、C【解析】設,代入雙曲線方程相減后可求得,從而得漸近線方程【詳解】設,則,相減得,∴,又線段的中點為P(2,4),的斜率為1,∴,,∴漸近線方程為故選:C【點睛】方法點睛:本題考查求雙曲線的漸近線方程,已知弦的中點(或涉及到中點),可設弦兩端點的坐標,代入雙曲線方程后作差,作差后式子中有直線的斜率,弦中點坐標,有.這種方法叫點差法10、C【解析】先設等比數(shù)列的公比為,結(jié)合條件可知,由等差中項可知,利用等比數(shù)列的通項公式進行化簡求出,最后利用分組求和法,以及等比數(shù)列、等差數(shù)列的求和公式,即可求出數(shù)列的前10項和.【詳解】設等比數(shù)列的公比為,,,成公差不為0的等差數(shù)列,則,,都不相等,,且,,,,即,解得:或(舍去),,所以數(shù)列的前10項和:.故選:C.11、C【解析】詳解】,令,解得或;令,解得函數(shù)在上遞增,在遞減,在遞增,時,取極大值,極大值是時,函數(shù)取極小值,極小值是,而時,時,,故函數(shù)的最小值為,故選C.12、A【解析】A:根據(jù)方差和標準差的定義進行判斷;B:根據(jù)中位數(shù)的定義判斷;C:根據(jù)回歸直線必過樣本中心點進行判斷;D:根據(jù)“且”命題真假關系進行判斷.【詳解】對于A,方差和標準差都是刻畫樣本數(shù)據(jù)分散程度的統(tǒng)計量,故A正確;對于B,若為數(shù)據(jù),2,3,,的中位數(shù),需先將數(shù)據(jù)從小到大排列,此時數(shù)據(jù)里面之間的數(shù)順序可能發(fā)生變化,則為排序后的第1010個數(shù)據(jù)的值,這個數(shù)不一定是原來的,故B錯誤;對于C,回歸直線一定經(jīng)過樣本點的中心,,故C錯誤;對于D,若“”為假命題,則、中至少有一個是假命題,故D錯誤;故選:A二、填空題:本題共4小題,每小題5分,共20分。13、18【解析】本題應注意分情況討論,即前五場甲隊獲勝的兩種情況,應用獨立事件的概率的計算公式求解.題目有一定的難度,注重了基礎知識、基本計算能力及分類討論思想的考查【詳解】前四場中有一場客場輸,第五場贏時,甲隊以獲勝的概率是前四場中有一場主場輸,第五場贏時,甲隊以獲勝的概率是綜上所述,甲隊以獲勝的概率是【點睛】由于本題題干較長,所以,易錯點之一就是能否靜心讀題,正確理解題意;易錯點之二是思維的全面性是否具備,要考慮甲隊以獲勝的兩種情況;易錯點之三是是否能夠準確計算14、【解析】設直線的方程為,,與拋物線的方程聯(lián)立整理得,由三角形的面積公式求得,再根據(jù)基本不等式可得答案.【詳解】解:由拋物線C:得焦點,又直線交C于A、B兩點,所以直線的斜率不為0,則設直線的方程為,,聯(lián)立,整理得,則,又,,所以,又,當且僅當,即時取等號,所以的最小值為.故答案為:.15、①.②.【解析】設,根據(jù)可得圓的方程,利用垂徑定理可求.【詳解】設,則,整理得到,即.因為,故為的中點,過圓心作的垂線,垂足為,則為的中點,則,故,解得,故答案為:,.16、【解析】分別設線段的中點,線段的中點,再利用點差法可表示出,由平行關系易知三點共線,從而利用斜率相等的關系構(gòu)造方程,代入整理可得到關系,利用雙曲線得到關于的齊次方程,進而求得離心率.【詳解】設,,線段的中點,兩式相減得:…①設,,線段的中點同理可得:…②,易知三點共線,將①②代入得:,所以,即,由題意可得,故.∴,即故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)證明見解析;(Ⅱ)【解析】(Ⅰ)運用線面平行的判定定理證明;(Ⅱ)借助體積相等建立方程求解即可【詳解】(Ⅰ)證明:取的中點,連接,因為,所以,又因為平面,所以,所以平面,因為平面,所以∥,面,平面,所以∥平面;(Ⅱ)因為平面,面,所以平面平面,平面平面,過點作直線,則平面,由已知平面,∥,,可得,又,所以為的中點,在中,,在中,,,在中,,由等面積法知,所以,即點D到平面EMC的距離為.考點:直線與平面的位置關系及運用【易錯點晴】本題考查的是空間的直線與平面平行的推證問題和點到直線的距離問題.解答時,證明問題務必要依據(jù)判定定理,因此線面的平行問題一定要在所給的平面中找出一條直線與這個平面外的直線平行,敘述時一定要交代面外的線和面內(nèi)的線,這是許多學生容易忽視的問題,也高考閱卷時最容易扣分的地方,因此在表達時一定要引起注意18、(1);(2)點P在定直線x=9上.理由見解析.【解析】(1)設點,根據(jù)兩點坐標距離公式和等比數(shù)列的等比中項的應用列出方程,整理方程即可;(2)設直線MN方程為:,點,聯(lián)立雙曲線方程消去x得到關于y的一元二次方程,根據(jù)韋達定理寫出,利用兩點坐標和直線的點斜式方程寫出直線PA、PB,聯(lián)立方程組,解方程組即可.【小問1詳解】設點,則,又,所以,整理,得,即軌跡M的方程C為:;【小問2詳解】點P在定直線上.由(1)知,曲線C方程為:,直線MN過點D(1,0)若直線MN斜率不存在,則,得,不符合題意;設直線MN方程為:,點,則,消去x,得,有,,,,所以直線PA方程為:,直線PB方程為:,所以點P的坐標為方程組的解,有,即,整理,得,解得,即點P在定直線上.19、(1);(2)或.【解析】(1)求出圓心到直線的距離,再由垂徑定理求弦長;(2)由圓心到直線的距離大于半徑列式求解的范圍【詳解】解:(1)圓,圓心為,半徑,圓心到直線的距離為,弦長(2)若直線與圓無公共點,則圓心到直線的距離大于半徑解得或20、(1)(2)或【解析】(1)把點的坐標代入方程即可;(2)設直線方程,解聯(lián)立方程組,消未知數(shù),得到一元二次方程,再利用韋達定理和已知條件求斜率.【小問1詳解】因為拋物線C的頂點在原點,焦點在x軸上,所以設拋物線方程為又因為點在拋物線C上,所以,解得,所以拋物線的方程為;【小問2詳解】拋物線C的焦點為,當直線l的斜率不存在時,,不符合題意;當直線l的斜率存在時,設直線l的方程為,設直線l交拋物線的兩點坐標為,,由得,,,,由拋物線得定義可知,所以,解得,即,所以直線l的方程為或21、(1)(2)證明見解析,定值為【解析】(1)設出直線的方程并與拋物線方程聯(lián)立,結(jié)合根與系數(shù)關系求得.(2)求得過點的拋物線的切線方程,由此求得兩點的坐標,通過化簡來證得為定值,并求得定值.【小問1詳解】依題意可知直線的斜率不為零,設直線的方程為,設,,消去并化簡得,所以,所以.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《孕嬰行業(yè)市場分析》課件
- 《ttt初級班講義》課件
- 單位人力資源管理制度展示大全十篇
- 單位人力資源管理制度佳作大合集十篇
- 黑龍江省哈爾濱市2024-2025學年高三上學期期末考試語文試題(含答案)
- 系統(tǒng)總體設計教學課件
- 單位管理制度收錄大合集【人員管理】十篇
- 2025年工程建設規(guī)范標準編制及相關工作計劃(征求意見稿)
- 小兒清熱沖劑行業(yè)市場發(fā)展及發(fā)展趨勢與投資戰(zhàn)略研究報告
- 吉林大學實驗課件-紫外光譜實驗
- 2025年1月山西、陜西、寧夏、青海普通高等學校招生考試適應性測試(八省聯(lián)考)政治
- DB3707T 131-2024 城鎮(zhèn)居民供熱服務規(guī)范
- 《廣東省智慧高速公路建設指南(試行)》
- 護理年終個人工作總結(jié)
- 社區(qū)中心及衛(wèi)生院65歲及以上老年人健康體檢分析報告模板
- 年度分析報告格式范文
- 2024年度吉林省國家電網(wǎng)招聘之法學類典型題匯編及答案
- 山東省臨沂市2023-2024學年高一上學期1月期末考試 物理 含答案
- 2024年世界職業(yè)院校技能大賽中職組“嬰幼兒保育組”賽項考試題庫-下(多選、判斷題)
- 2023年福建公務員錄用考試《行測》真題卷及答案解析
- 中華人民共和國學前教育法
評論
0/150
提交評論