福建省三明市第二中學2025屆高一上數(shù)學期末監(jiān)測試題含解析_第1頁
福建省三明市第二中學2025屆高一上數(shù)學期末監(jiān)測試題含解析_第2頁
福建省三明市第二中學2025屆高一上數(shù)學期末監(jiān)測試題含解析_第3頁
福建省三明市第二中學2025屆高一上數(shù)學期末監(jiān)測試題含解析_第4頁
福建省三明市第二中學2025屆高一上數(shù)學期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省三明市第二中學2025屆高一上數(shù)學期末監(jiān)測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)f(x)=tan的單調遞增區(qū)間是()A.(k∈Z) B.(k∈Z)C.(k∈Z) D.(k∈Z)2.函數(shù)在區(qū)間單調遞減,在區(qū)間上有零點,則的取值范圍是A. B.C. D.3.已知過點和的直線與直線平行,則的值為()A. B.0C.2 D.104.下列函數(shù)中在定義域上為減函數(shù)的是()A. B.C. D.5.函數(shù)在區(qū)間上的簡圖是()A. B.C. D.6.若,,則的值為()A. B.-C. D.7.命題“?x∈R,都有x2-x+3>0A.?x∈R,使得x2-x+3≤0 B.?x∈RC.?x∈R,都有x2-x+3≤0 D.?x?R8.設,,,則,,三者的大小關系是()A. B.C. D.9.已知函數(shù)在上是增函數(shù),則實數(shù)的取值范圍為()A. B.C. D.10.已知函數(shù)是上的增函數(shù)(其中且),則實數(shù)的取值范圍為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在三棱柱中,各棱長相等,側棱垂直于底面,點是側面的中心,則與平面所成角的大小是______.12.在正三棱柱中,為棱的中點,若是面積為6的直角三角形,則此三棱柱的體積為__________13.設a>0且a≠1,函數(shù)fx14.已知為銳角,,,則__________15.已知,且的終邊上一點P的坐標為,則=______16.已知函數(shù),若,則___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的最大值.18.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分別是PA,BC的中點,且AD=2PD=2(1)求證:MN∥平面PCD;(2)求證:平面PAC⊥平面PBD;(3)求四棱錐P-ABCD的體積19.如圖,某人計劃用籬笆圍成一個一邊靠墻(墻的長度沒有限制)的矩形生態(tài)種植園.設生態(tài)種植園的長為,寬為(1)若生態(tài)種植園面積為,則為何值時,可使所用籬笆總長最???(2)若使用的籬笆總長度為,求的最小值20.已知定義域為函數(shù)是奇函數(shù).(1)求的值;(2)判斷的單調性,并證明;(3)若,求實數(shù)的取值范圍.21.求解下列問題:(1)已知,,求的值;(2)已知,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】運用整體代入法,結合正切函數(shù)的單調區(qū)間可得選項.【詳解】由kπ-<2x-<kπ+(k∈Z),得<x<(k∈Z),所以函數(shù)f(x)=tan的單調遞增區(qū)間為(k∈Z).故選:B.【點睛】本題考查正切函數(shù)的單調性,屬于基礎題.2、C【解析】分析:結合余弦函數(shù)的單調減區(qū)間,求出零點,再結合零點范圍列出不等式詳解:當,,又∵,則,即,,由得,,∴,解得,綜上.故選C.點睛:余弦函數(shù)的單調減區(qū)間:,增區(qū)間:,零點:,對稱軸:,對稱中心:,.3、A【解析】因為過點和的直線與直線平行,所以兩直線的斜率相等.【詳解】解:∵直線的斜率等于,∴過點和的直線的斜率也是,,解得,故選:A.【點睛】本題考查兩斜率存在的直線平行的條件是斜率相等,以及斜率公式的應用.4、C【解析】根據基本初等函數(shù)的單調性逐一判斷各個選項即可得出答案.【詳解】對于A,由函數(shù),定義域為,且在上遞增,故A不符題意;對于B,由函數(shù),定義域為,且在上遞增,故B不符題意;對于C,由函數(shù),定義域為,且在上遞減,故C符合題意;對于D,由函數(shù),定義域為,且在上遞增,故D不符題意.故選:C5、B【解析】分別取,代入函數(shù)中得到值,對比圖象即可利用排除法得到答案.【詳解】當時,,排除A、D;當時,,排除C.故選:B.6、D【解析】直接利用同角三角函數(shù)關系式的應用求出結果.【詳解】已知,,所以,即,所以,所以,所以.故選:D.7、A【解析】根據全稱命題的否定表示方法選出答案即可.【詳解】命題“?x∈R,都有x2“?x∈R,使得x2故選:A.8、D【解析】根據對數(shù)的運算變形、,再根據對數(shù)函數(shù)的性質判斷即可;【詳解】解:,,因為函數(shù)在定義域上單調遞增,且,所以,即,故選:D9、D【解析】利用二次函數(shù)單調性,列式求解作答.【詳解】函數(shù)的單調遞增區(qū)間是,依題意,,所以,即實數(shù)的取值范圍是.故選:D10、D【解析】利用對數(shù)函數(shù)、一次函數(shù)的性質判斷的初步取值范圍,再由整體的單調性建立不等式,構造函數(shù),利用函數(shù)的單調性求解不等式,從求得的取值范圍.【詳解】由題意必有,可得,且,整理為.令由換底公式有,由函數(shù)為增函數(shù),可得函數(shù)為增函數(shù),注意到,所以由,得,即,實數(shù)a的取值范圍為故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、60°【解析】取BC的中點E,則,則即為所求,設棱長為2,則,12、【解析】由題,設,截面是面積為6的直角三角形,則由得,又則故答案為13、1,0【解析】令指數(shù)為0即可求得函數(shù)圖象所過的定點.【詳解】由題意,令x-1=0?x=1,y=1-1=0,則函數(shù)的圖象過定點(1,0).故答案為:(1,0).14、【解析】由,都是銳角,得出的范圍,由和的值,利用同角三角函數(shù)的基本關系分別求出和的值,然后把所求式子的角變?yōu)?,利用兩角和與差的余弦函數(shù)公式化簡計算,即得結果【詳解】,都是銳角,,又,,,,則故答案為:.15、【解析】先求解,判斷的終邊在第四象限,計算,結合,即得解【詳解】由題意,故點,故終邊在第四象限且,又故故答案為:16、0【解析】由,即可求出結果.【詳解】由知,則,又因為,所以.故答案:0.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)4【解析】(1)根據余弦函數(shù)的周期公式,求得答案;(2)根據余弦函數(shù)的性質,可求得函數(shù)f(x)的最大值.【小問1詳解】由題意可得:函數(shù)的最小正周期為:;【小問2詳解】因為,故,即的最大值為4.18、(1)見解析(2)見解析(3)【解析】(1)先證明平面MEN∥平面PCD,再由面面平行的性質證明MN∥平面PCD;(2)證明AC⊥平面PBD,即可證明平面PAC⊥平面PBD;(3)利用錐體的體積公式計算即可【詳解】(1)證明:取AD的中點E,連接ME、NE,∵M、N是PA、BC的中點,∴在△PAD和正方形ABCD中,ME∥PD,NE∥CD;又∵ME∩NE=E,PD∩CD=D,∴平面MEN∥平面PCD,又MN?平面MNE,∴MN∥平面PCD;(2)證明:∵四邊形ABCD是正方形,∴AC⊥BD,又∵PD⊥底面ABCD,∴PD⊥AC,且PD∩BD=D,∴AC⊥平面PBD,∴平面PAC⊥平面PBD;(3)∵PD⊥底面ABCD,∴PD是四棱錐P-ABCD的高,且PD=1,∴正方形ABCD的面積為S=4,∴四棱錐P-ABCD的體積為VP-ABCD=×S四邊形ABCD×PD=×4×1=【點睛】本題考查了空間中的平行與垂直關系的應用問題,也考查了錐體體積計算問題,是中檔題19、(1)為,為;(2).【解析】(1)根據題意,可得,籬笆總長為,利用基本不等式可求出的最小值,即可得出對應的值;(2)由題可知,再利用整體乘“1”法和基本不等式,求得,進而得出的最小值.【小問1詳解】解:由已知可得,而籬笆總長為,又,則,當且僅當,即時等號成立,菜園的長為,寬為時,可使所用籬笆總長最小【小問2詳解】解:由已知得,,又,,當且僅當,即時等號成立,的最小值是20、(1)(2)增函數(shù),證明見解析(3)或【解析】(1)由求出,再驗證此時為奇函數(shù)即可;(2)將的解析式分離常數(shù)后可判斷出單調性,再利用增函數(shù)的定義可證結論成立;(3)利用奇函數(shù)性質化為,再利用增函數(shù)性質可求出結果.【小問1詳解】因為是上的奇函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論