版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆甘南市重點(diǎn)中學(xué)高二數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在空間直角坐標(biāo)系中,,,若∥,則x的值為()A.3 B.6C.5 D.42.已知是拋物線上的一個(gè)動(dòng)點(diǎn),是圓上的一個(gè)動(dòng)點(diǎn),是一個(gè)定點(diǎn),則的最小值為A. B.C. D.3.已知直線為拋物線的準(zhǔn)線,直線經(jīng)過(guò)拋物線的焦點(diǎn),與拋物線交于點(diǎn),則的最小值為()A. B.C.4 D.84.已知等差數(shù)列前項(xiàng)和為,若,則的公差為()A.4 B.3C.2 D.15.已知隨機(jī)變量服從正態(tài)分布,且,則()A.0.6 B.0.4C.0.3 D.0.26.設(shè)函數(shù)在定義域內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.7.已知,分別是圓和圓上的動(dòng)點(diǎn),點(diǎn)在直線上,則的最小值是()A. B.C. D.8.已知,則條件“”是條件“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件.9.若圓與圓有且僅有一條公切線,則()A.-23 B.-3C.-12 D.-1310.現(xiàn)有甲、乙、丙、丁、戊五位同學(xué),分別帶著A、B、C、D、E五個(gè)不同的禮物參加“抽盲盒”學(xué)游戲,先將五個(gè)禮物分別放入五個(gè)相同的盒子里,每位同學(xué)再分別隨機(jī)抽取一個(gè)盒子,恰有一位同學(xué)拿到自己禮物的概率為()A. B.C. D.11.已知橢圓:的左、右焦點(diǎn)分別為、,為坐標(biāo)原點(diǎn),為橢圓上一點(diǎn).與軸交于一點(diǎn),,則橢圓C的離心率為()A. B.C. D.12.圓的圓心和半徑分別是()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn),是橢圓內(nèi)的兩個(gè)點(diǎn),M是橢圓上的動(dòng)點(diǎn),則的最大值為_(kāi)_____14.類比教材中推導(dǎo)球體積公式的方法,試計(jì)算橢圓T:繞y軸旋轉(zhuǎn)一周后所形成的旋轉(zhuǎn)體(我們稱為橄欖球)的體積為_(kāi)_______.15.已知向量,,若,則______16.若雙曲線的漸近線方程為,則該雙曲線的離心率為_(kāi)__________;若,則雙曲線的右焦點(diǎn)到漸近線的距離為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中,角的對(duì)邊分別為,且.(1)求;(2)若,的面積為,求.18.(12分)四棱錐中,平面,四邊形為平行四邊形,(1)若為中點(diǎn),求證平面;(2)若,求面與面的夾角的余弦值.19.(12分)已知數(shù)列滿足(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和20.(12分)如圖,在四棱錐中,底面四邊形為角梯形,,,,O為的中點(diǎn),,.(1)證明:平面;(2)若,求平面與平面所成夾角的余弦值.21.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)當(dāng)時(shí),記在區(qū)間的最大值為M,最小值為N,求的取值范圍.22.(10分)設(shè)橢圓:的左頂點(diǎn)為,右頂點(diǎn)為.已知橢圓的離心率為,且以線段為直徑的圓被直線所截得的弦長(zhǎng)為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)過(guò)點(diǎn)的直線與橢圓交于點(diǎn),且點(diǎn)在第一象限,點(diǎn)關(guān)于軸對(duì)稱點(diǎn)為點(diǎn),直線與直線交于點(diǎn),若直線斜率大于,求直線的斜率的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】依題意可得,即可得到方程組,解得即可;【詳解】解:依題意,即,所以,解得故選:D2、A【解析】恰好為拋物線的焦點(diǎn),等于到準(zhǔn)線的距離,要想最小,過(guò)圓心作拋物線的準(zhǔn)線的垂線交拋物線于點(diǎn),交圓于,最小值等于圓心到準(zhǔn)線的距離減去半徑4-1=.考點(diǎn):1.拋物線的定義;2.圓中的最值問(wèn)題;3、D【解析】先求拋物線的方程,再聯(lián)立直線方程和拋物線方程,由弦長(zhǎng)公式可求的最小值.【詳解】因?yàn)橹本€為拋物線的準(zhǔn)線,故即,故拋物線方程為:.設(shè)直線,則,,而,當(dāng)且僅當(dāng)?shù)忍?hào)成立,故的最小值為8,故選:D.4、A【解析】由已知,結(jié)合等差數(shù)列前n項(xiàng)和公式、通項(xiàng)公式列方程組求公差即可.詳解】由題設(shè),,解得.故選:A5、A【解析】根據(jù)正態(tài)曲線的對(duì)稱性即可求得答案.【詳解】由題意,正態(tài)曲線的對(duì)稱軸為,則與關(guān)于對(duì)稱軸對(duì)稱,于是.故選:A.6、D【解析】根據(jù)的圖象可得的單調(diào)性,從而得到在相應(yīng)范圍上的符號(hào)和極值點(diǎn),據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個(gè)不同的零點(diǎn),且在這兩個(gè)零點(diǎn)的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點(diǎn)睛】本題考查導(dǎo)函數(shù)圖象的識(shí)別,此類問(wèn)題應(yīng)根據(jù)原函數(shù)的單調(diào)性來(lái)考慮導(dǎo)函數(shù)的符號(hào)與零點(diǎn)情況,本題屬于基礎(chǔ)題.7、B【解析】由已知可得,,求得關(guān)于直線的對(duì)稱點(diǎn)為,則,計(jì)算即可得出結(jié)果.【詳解】由題意可知圓的圓心為,半徑,圓的圓心為,半徑設(shè)關(guān)于直線的對(duì)稱點(diǎn)為,則解得,則因?yàn)?,分別在圓和圓上,所以,,則因?yàn)?,所以故選:B.8、A【解析】若命題,則p是q的充分不必要條件,q是p的必要不充分條件【詳解】因?yàn)椋?,所?故選:A9、A【解析】根據(jù)兩圓有且僅有一條公切線,得到兩圓內(nèi)切,從而可求出結(jié)果.【詳解】因?yàn)閳A,圓心為,半徑為;圓可化為,圓心為,半徑,又圓與圓有且僅有一條公切線,所以兩圓內(nèi)切,因此,即,解得.故選:A.10、D【解析】利用排列組合知識(shí)求出每位同學(xué)再分別隨機(jī)抽取一個(gè)盒子,恰有一位同學(xué)拿到自己禮物的情況個(gè)數(shù),以及五人抽取五個(gè)禮物的總情況,兩者相除即可.【詳解】先從五人中抽取一人,恰好拿到自己禮物,有種情況,接下來(lái)的四人分為兩種情況,一種是兩兩一對(duì),兩個(gè)人都拿到對(duì)方的禮物,有種情況,另一種是四個(gè)人都拿到另外一個(gè)人的禮物,不是兩兩一對(duì),都拿到對(duì)方的情況,由種情況,綜上:共有種情況,而五人抽五個(gè)禮物總數(shù)為種情況,故恰有一位同學(xué)拿到自己禮物的概率為.故選:D11、C【解析】由橢圓的性質(zhì)可先求得,故可得,再由橢圓的定義得a,c的關(guān)系,故可得答案【詳解】,,又,,則,,則,,由橢圓的定義得,,,故選:C12、D【解析】先化為標(biāo)準(zhǔn)方程,再求圓心半徑即可.【詳解】先化為標(biāo)準(zhǔn)方程可得,故圓心為,半徑為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】結(jié)合橢圓的定義求得正確答案.【詳解】依題意,橢圓方程為,所以,所以是橢圓的右焦點(diǎn),設(shè)左焦點(diǎn)為,根據(jù)橢圓的定義可知,,所以的最大值為.故答案為:14、【解析】類比球的體積公式的方法,將橄欖球細(xì)分為無(wú)數(shù)個(gè)小圓柱體疊加起來(lái)【詳解】設(shè)橢圓的方程為:,則令(根據(jù)對(duì)稱性,我們只需算出軸上半部分的體積)不妨設(shè),按照平均分為等份,則每一等份都是相同高度的圓柱體,第1個(gè)圓柱體的體積的半徑為:第2個(gè)圓柱體的體積的半徑為:第個(gè)圓柱體的體積的半徑為:則第個(gè)圓柱體的體積為:化簡(jiǎn)可得:則有:根據(jù)可得:當(dāng)時(shí),則有:故橢圓繞著軸旋轉(zhuǎn)一周后的體積為:而題意中,則橢圓繞著軸旋轉(zhuǎn)一周后的體積為故答案為:15、【解析】根據(jù)向量平行求得,由此求得.【詳解】由于,所以.故答案為:16、①.②.3【解析】由漸近線方程知,結(jié)合雙曲線參數(shù)關(guān)系及離心率的定義求雙曲線的離心率,由已知可得右焦點(diǎn)為,應(yīng)用點(diǎn)線距離公式求距離.【詳解】由題設(shè),,則,當(dāng)時(shí),,則雙曲線為,故右焦點(diǎn)為,所以右焦點(diǎn)到漸近線的距離為.故答案為:,3.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)由正弦定理得到,兩邊消去公因式得到,化一即可求得角A;(2)因?yàn)椋?,再結(jié)合余弦定理得到結(jié)果.【詳解】(1)由,得,因?yàn)椋?,整理得:,因,所?(2)因?yàn)?,所以,因?yàn)榧?,所以,?【點(diǎn)睛】本題主要考查正弦定理及余弦定理的應(yīng)用以及三角形面積公式,屬于難題.在解與三角形有關(guān)的問(wèn)題時(shí),正弦定理、余弦定理是兩個(gè)主要依據(jù).解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡(jiǎn)捷一般來(lái)說(shuō),當(dāng)條件中同時(shí)出現(xiàn)及、時(shí),往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時(shí),往往運(yùn)用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進(jìn)行解答.18、(1)證明見(jiàn)解析(2)【解析】(1)先證,,再證平面即可;(2)建立空間直角坐標(biāo)系,先求出面與面的法向量,再計(jì)算夾角余弦值即可.小問(wèn)1詳解】取中點(diǎn),連接,則四邊形為平行四邊形,,為直角三角形,且.又平面,平面,.又,平面.【小問(wèn)2詳解】,為等邊三角形,取中點(diǎn),連接,則,以為坐標(biāo)原點(diǎn),分別以為軸建立空間坐標(biāo)系,如圖令,則,設(shè)面的法向量為,則由得取,則設(shè)面的法向量為,則由得取,則設(shè)面與面的夾角為,則所以面與面的夾角的余弦值為.19、(1)(2)【解析】(1)當(dāng)時(shí),由,可得,兩式相減化簡(jiǎn)可求得通項(xiàng),(2)由(1)得,然后利用裂項(xiàng)相消法可求得結(jié)果【小問(wèn)1詳解】因?yàn)?,所以時(shí),,兩式作差得,,所以時(shí),,又時(shí),,得,符合上式,所以的通項(xiàng)公式為【小問(wèn)2詳解】由(1)知,所以即數(shù)列的前n項(xiàng)和20、(1)證明見(jiàn)解析;(2).【解析】(1)連接,可通過(guò)證明,得平面;(2)以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,求出平面的法向量和平面的法向量,通過(guò)向量的夾角公式可得答案.【小問(wèn)1詳解】如圖,連接,在中,由可得.因?yàn)椋?,所以,,因?yàn)椋?,,所以,所?又因?yàn)?,平面,,所以平?【小問(wèn)2詳解】由(1)可知,,,兩兩垂直,以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,,,,.由,有,則,設(shè)平面的法向量為,由,,有,取,則,,可得平面的一個(gè)法向量為.設(shè)平面的法向量為,由,,有,取,則,,可得平面的一個(gè)法向量為.由,,,可得平面與平面所成夾角的余弦值為.21、(1)答案見(jiàn)解析;(2).【解析】(1)求得,對(duì)參數(shù)進(jìn)行分類討論,根據(jù)導(dǎo)函數(shù)函數(shù)值的正負(fù)即可判斷的單調(diào)性;(2)根據(jù)(1)中所求,求得,以及,再求其取值范圍即可.【小問(wèn)1詳解】因?yàn)?,故可得,令,可得或;?dāng)時(shí),,此時(shí)在上單調(diào)遞增;當(dāng)時(shí),當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.綜上所述:當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),和單調(diào)遞增,在單調(diào)遞減;當(dāng)時(shí),在和單調(diào)遞增,在單調(diào)遞減.【小問(wèn)2詳解】由(1)可知:當(dāng)時(shí),在單調(diào)遞減,在單調(diào)遞增又,,故在單調(diào)遞減,在單調(diào)遞增.則的最小值;又,當(dāng)時(shí),的最大值,此時(shí);當(dāng)時(shí),的最大值,此時(shí),令,則,所以在上單調(diào)遞減,所以,所以;所以的取值范圍為.22、(1);(2).【解析】(1)根據(jù)直
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年全球及中國(guó)建筑用窗膜行業(yè)供需現(xiàn)狀及未來(lái)趨勢(shì)發(fā)展分析報(bào)告
- 2024-2030年全球及中國(guó)廁所輔助產(chǎn)品行業(yè)需求規(guī)模及前景效益預(yù)測(cè)報(bào)告
- 2024-2030年全球冰鎬行業(yè)發(fā)展動(dòng)態(tài)及投資盈利預(yù)測(cè)報(bào)告
- 2024-2030年全球與中國(guó)松木地板行業(yè)發(fā)展現(xiàn)狀及投資需求分析報(bào)告
- 2024-2030年假頭發(fā)公司技術(shù)改造及擴(kuò)產(chǎn)項(xiàng)目可行性研究報(bào)告
- 2024-2030年中國(guó)魚(yú)子醬行業(yè)市場(chǎng)銷售模式及投資盈利預(yù)測(cè)報(bào)告版
- 2024-2030年中國(guó)高速公路服務(wù)區(qū)行業(yè)十三五規(guī)劃及投資運(yùn)作模式分析報(bào)告
- 2024-2030年中國(guó)高粘保護(hù)膜行業(yè)運(yùn)營(yíng)趨勢(shì)及發(fā)展?jié)摿Ψ治鰣?bào)告
- 智能代理課程設(shè)計(jì)
- 機(jī)床夾具課程設(shè)計(jì)
- 植物學(xué)單子葉植物胚的發(fā)育與結(jié)構(gòu)
- 新課標(biāo)下高中信息技術(shù)項(xiàng)目式學(xué)習(xí)教學(xué)評(píng)價(jià)體系初探 論文
- 行車時(shí)遇突發(fā)故障的應(yīng)急辦法演示
- 互聯(lián)網(wǎng)金融(同濟(jì)大學(xué))智慧樹(shù)知到答案章節(jié)測(cè)試2023年
- XX公司學(xué)歷、職稱、技能工資補(bǔ)貼規(guī)定
- 廣東省江門市2022-2023學(xué)年高一上學(xué)期期末調(diào)研考試物理試題(一)
- 超高大截面框架柱成型質(zhì)量控制
- 簡(jiǎn)單年會(huì)策劃方案
- GB/T 38228-2019呼吸防護(hù)自給閉路式氧氣逃生呼吸器
- 酒店安全用電常識(shí)介紹課件
- 皇帝的新裝英語(yǔ)話劇劇本
評(píng)論
0/150
提交評(píng)論